Những câu hỏi liên quan
Linh Châu
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 7 2020 lúc 12:21

1.

Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)

\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

2.

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)

Cộng vế với vế:

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)

3.

Từ câu b, thay \(c=1\) ta được:

\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)

Bình luận (0)
Nguyễn Việt Lâm
3 tháng 7 2020 lúc 12:25

4.

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c\)

5.

\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)

Cộng vế với vế:

\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Bình luận (0)
l҉o҉n҉g҉ d҉z҉
8 tháng 1 2021 lúc 22:31

1. bđt được viết lại thành

\(ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)

Theo bđt AM-GM thì :

\(ab+bc\ge2\sqrt{ab\cdot bc}=2\sqrt{ab^2c}=2b\sqrt{ac}\)

Tương tự : \(bc+ca\ge2c\sqrt{ab}\)\(ab+ca\ge2a\sqrt{bc}\)

Cộng vế với vế

=> \(2\left(ab+bc+ca\right)\ge2\left(a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\right)\)

=> \(ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)( đpcm )

Dấu "=" xảy ra <=> a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thiều Công Thành
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Tran Le Khanh Linh
23 tháng 8 2020 lúc 18:35

Bài 1: Ta có \(\left(\frac{a^2}{b}-a+b\right)+b^2=\frac{a^2-ab+b^2}{b}+b\ge2\sqrt{a^2-ab+b^2}\)  (áp dụng Bất Đẳng Thức Cosi)

\(=\sqrt{a^2-ab+b^2}+\sqrt{\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2}\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\)

\(\Rightarrow\frac{a^2}{b}-a+2b\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\left(1\right)\)

Tương tự ta có \(\hept{\begin{cases}\frac{b^2}{c}-b+2c\ge\sqrt{b^2-bc+c^2}+\frac{1}{2}\left(b+c\right)\left(2\right)\\\frac{c^2}{a}-c+2a\ge\sqrt{c^2-ac+a^2}+\frac{1}{2}\left(a+c\right)\left(3\right)\end{cases}}\)

Từ (1) và (2) và (3) \(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ac+a^2}\)

Dấu "=" xảy ra khi a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
Luân Đào
Xem chi tiết
tthnew
28 tháng 7 2019 lúc 19:15

Đề chơi căng nhỉ?

a) Dễ chứng minh VP =< 3

BĐT \(\Leftrightarrow\left(\frac{a+b}{1+a}-1\right)+\left(\frac{b+c}{1+b}-1\right)+\left(\frac{c+a}{1+c}-1\right)\ge0\)

\(\Leftrightarrow\frac{b-1}{1+a}+\frac{c-1}{1+b}+\frac{a-1}{1+c}\ge0\)

\(\Leftrightarrow\frac{\left(b-1\right)^2}{\left(1+a\right)\left(b-1\right)}+\frac{\left(c-1\right)^2}{\left(1+b\right)\left(c-1\right)}+\frac{\left(a-1\right)^2}{\left(1+c\right)\left(a-1\right)}\) >=0

Áp dụng BĐT Cauchy-Schwarz dạng Engel vào VT ta có đpcm.

P/s: Èo, sao đơn giản thế nhỉ? Em có làm sai chỗ nào chăng?

Bình luận (4)
Trần Phúc Khang
28 tháng 7 2019 lúc 21:56

a, Ta có \(\frac{a+b}{a+1}=\frac{\left(a+b\right)\left(a+1\right)-a\left(a+b\right)}{a+1}=a+b-\frac{a\left(a+b\right)}{a+1}\)

\(\frac{1}{a+1}\le\frac{a+1}{4a}\)

=> \(\frac{a+b}{1+a}\ge a+b-\frac{\left(a+1\right)\left(a+b\right)}{4}=\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}a^2-\frac{1}{4}ab\)

Khi đó

\(Vt\ge\frac{3}{2}\left(a+b+c\right)-\frac{1}{4}\left(a^2+b^2+c^2\right)-\frac{1}{4}\left(ab+bc+ac\right)\)

=> \(VT\ge\frac{9}{2}-\frac{1}{4}\left(9-2ab-2bc-2ac\right)-\frac{1}{4}\left(ab+bc+ac\right)\)

=> \(VT\ge\frac{9}{4}+\frac{1}{4}\left(ab+bc+ac\right)\)

Lại có \(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=3\)

=> \(VT\ge ab+bc+ac\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

b,Ta có \(\frac{a}{b\left(a+b^2\right)}=\frac{a+b^2-b^2}{b\left(a+b^2\right)}=\frac{1}{b}-\frac{b}{a+b^2}\)

\(a+b^2\ge2b\sqrt{a}\)

=> \(\frac{a}{b\left(a+b^2\right)}\ge\frac{1}{b}-\frac{1}{2\sqrt{a}}\)

Lại có \(\frac{1}{\sqrt{a.1}}\le\frac{1}{2}\left(\frac{1}{a}+1\right)\)

=> \(\frac{a}{b\left(a+b^2\right)}\ge\frac{1}{b}-\frac{1}{4}.\left(\frac{1}{a}+1\right)\)

Khi đó

\(VT\ge\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\)

=> \(VT\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

Bình luận (3)
Nguyễn Quang Định
29 tháng 7 2019 lúc 10:24

Bất đẳng thức được viết lại thành

\(\sum\frac{3-a}{1+a}\ge ab+bc+ca\)

\(ab+bc+ca\le3\) nên ta chỉ cần chứng minh

\(\sum\frac{3-a}{1+a}\ge3\)

Ta chứng minh bất đẳng thức phụ sau

\(\frac{3-a}{1+a}\ge2-a\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)

Thiết lập các bất đẳng thức tương tự ta có điều phải chứng minh

Bình luận (2)
Phan Nghĩa
Xem chi tiết
Làm gì mà căng
Xem chi tiết
HD Film
16 tháng 10 2019 lúc 21:45

\(\frac{a}{b^2+bc+c^2}+\frac{b}{c^2+ca+a^2}+\frac{c}{a^2+ab+b^2}=\frac{a^2}{ab^2+abc+ac^2}+\frac{b^2}{bc^2+abc+ba^2}+\frac{c^2}{ca^2+abc+cb^2}\)     (1)

Áp dụng BDT Cauchy-Schwarz: \(\left(1\right)\ge\frac{\left(a+b+c\right)^2}{ab^2+ac^2+ba^2+bc^2+ca^2+cb^2+3abc}\)

Lại có: \(ab^2+ac^2+ba^2+bc^2+ca^2+cb^2+3abc=\left(ab+bc+ac\right)\left(a+b+c\right)\)

Thay vào -> dpcm

Bình luận (0)
Làm gì mà căng
Xem chi tiết
Kudo Shinichi
17 tháng 10 2019 lúc 21:03

\(VT=\frac{a^2}{ab^2+abc+ac^2}+\frac{b^2}{c^2b+abc+a^2b}+\frac{c^2}{a^2c+abc+b^2c}\)

Áp dụng BĐT Cauchy dạng phân thức 

\(\Rightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)

\(\Leftrightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}\)

\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)

\(\Leftrightarrow VT\ge\frac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)

Dấu "=" xảy ra khi a=b=c

Chúc bạn học tốt !!!

Bình luận (0)
Marry
Xem chi tiết
Phúc
5 tháng 1 2018 lúc 19:59

\(\frac{bc+a^2}{a+b}+\frac{ac+b^2}{b+c}+\frac{ab+c^2}{a+c}\ge\)a+b+c

<=>\(\frac{bc+a^2}{a+b}-a+\frac{ac+b^2}{b+c}-b+\frac{ab+c^2}{a+c}-c\ge0\)

<=>\(\frac{b\left(c-a\right)}{a+b}+\frac{c\left(a-b\right)}{b+c}+\frac{a\left(b-c\right)}{a+c}\ge0\)

<=>\(\frac{b\left(b+c\right)\left(a+c\right)\left(a-c\right)}{\left(a+b\right)\left(c+c\right)\left(a+c\right)}\)+\(\frac{c\left(a+c\right)\left(a-b\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)+\(\frac{a\left(a+b\right)\left(b-c\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

<=>\(\frac{b^2c^2-b^2a^2+bc^3-a^2bc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)+\(\frac{a^3c-ab^2c+c^2a^2-b^2c^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)+\(\frac{a^2b^2-a^2c^2+ab^3-abc^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

<=>\(\frac{bc^3+a^3c+ab^3-a^2bc-ab^2c-abc^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

<=>\(\frac{2bc^3+2a^3c+2ab^3-2a^2bc-2ab^2c-2abc^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)>=0

<=>\(\frac{bc\left(c-a\right)^2+ac\left(a-b\right)^2+ab\left(b-c\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)(đung voi moi a,b,c >0)

Dấu ''='' xay ra khi a=b=c

Bình luận (0)

Sao lại thế???

Bình luận (0)
Phúc
5 tháng 1 2018 lúc 19:36

đây là đề bài hay bài làm thế?

Bình luận (0)
❤  Hoa ❤
Xem chi tiết
tth_new
21 tháng 4 2019 lúc 9:03

a)Chứng minh BĐT phụ sau: \(\frac{p^2}{m}+\frac{q^2}{n}\ge\frac{\left(p+q\right)^2}{m+n}\) (m,n>0)  (*)

\(\Leftrightarrow\frac{p^2n+q^2m}{mn}-\frac{p^2+2pq+q^2}{m+n}\ge0\)

\(\Leftrightarrow\frac{p^2n\left(m+n\right)+q^2m\left(m+n\right)-p^2mn-2pqmn-q^2mn}{mn\left(m+n\right)}\ge0\)

\(\Leftrightarrow\frac{\left(pq\right)^2-2.qp.mn+\left(qm\right)^2}{mn\left(m+n\right)}\ge0\Leftrightarrow\frac{\left(pn-qm\right)^2}{mn\left(m+n\right)}\ge0\) (đúng)

Dấu "=" xảy ra khi pn = qm.

Áp dụng BĐT (*) 2 lần,ta có: \(VT\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

Bình luận (0)
tth_new
21 tháng 4 2019 lúc 9:32

b) Có cách này như mình không chắc:

Chuẩn hóa abc = 1.Đặt \(\left(a;b;c\right)\rightarrow\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\)

Ta cần chứng minh: \(\frac{y^2}{x^2}+\frac{z^2}{y^2}+\frac{x^2}{z^2}\ge\frac{x}{y}+\frac{x}{z}+\frac{z}{x}\)

Ta có: \(\frac{y^2}{x^2}+\frac{z^2}{y^2}\ge2.\frac{z}{x}\) (Cô si)

\(\frac{z^2}{y^2}+\frac{x^2}{z^2}\ge2.\frac{x}{y}\)

\(\frac{y^2}{x^2}+\frac{x^2}{z^2}\ge2.\frac{y}{z}\)

Cộng theo vế 3 BĐT trên,ta được:\(2\left(\frac{y^2}{x^2}+\frac{z^2}{y^2}+\frac{x^2}{z^2}\right)\ge2\left(\frac{x}{y}+\frac{x}{z}+\frac{z}{x}\right)\)

Suy ra \(\frac{y^2}{x^2}+\frac{z^2}{y^2}+\frac{x^2}{z^2}\ge\frac{x}{y}+\frac{x}{z}+\frac{z}{x}\) (đpcm)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{y^2}{x^2}=\frac{z^2}{y^2}\\\frac{z^2}{y^2}=\frac{x^2}{z^2}\end{cases}\Leftrightarrow}\frac{y^2}{x^2}=\frac{z^2}{y^2}=\frac{x^2}{z^2}\Leftrightarrow\frac{y}{x}=\frac{z}{y}=\frac{x}{z}\Leftrightarrow a=b=c\)

Bình luận (0)
ღ๖ۣۜLinh
21 tháng 4 2019 lúc 8:46

Ta có:
a, a^2/(b + c) + (b + c)/4 >= a
=> a^2/(b + c) >= a - (b + c)/4 (1)
Tương tự ta có
b^2/(c + a) >= b - (c + a)/4 (2)
c^2/(a + b) >= c - (a + b)/4 (3)
Cộng (1), (2), (3) vế theo vế ta được
 b^2/(a + c) + c^2/(a + b)  >=  a - (b + c)/4 +  b - (c + a)/4 +  c - (a + b)/4
= (a + b + c)/2
Dấu = xảy ra khi a = b = c

Bình luận (0)