Cho a, b, c > 0. CM:
a)\(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{3}{4}\)
b)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{b+c}{a^2+bc}+\frac{c+a}{b^2+ac}+\frac{a+b}{c^2+ab}\)
c)\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Làm được câu nào thì làm giúp mình câu đó nhé!
Giả sử: \(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ca}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{bc+a^2}{a+b}+\frac{ca+b^2}{b+c}+\frac{ab+c^2}{c+a}\ge a+b+c\)
Cho a,b,c >0 Cmr
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b+c}{2}.\)
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c.\)
Cho \(a,b,c>0\)
CMR :\(\frac{a^4}{b\left(b+c\right)}+\frac{b^4}{c\left(c+a\right)}+\frac{c^4}{a\left(a+b\right)}\ge\frac{1}{2}\left(ab+bc+ca\right)\)
Áp dụng bđt Svac-xo ta có :
\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+ab+bc+ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{2}\ge\frac{ab+bc+ca}{2}\)
Dấu "-" xảy ra \(< =>a=b=c\)
Cho a,b,c >0 CMr :
\(a.\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+c}\ge\frac{a+b+c}{2}.\)
\(b.\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Bài 1:Cho a,b,c là các số dương tùy ý. Chứng minh rằng: \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b+c}{2}\)
Bài 2: Cho a,b,c là các số dương. Chứng minh các bđt:
a) \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a+b+c}{2}\)
b) \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}\left(d>0\right)\)
a, b, c > 0. CM:
a)\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
b)\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2+b^2-ab}+\sqrt{b^2+c^2-bc}+\sqrt{c^2+a^2-ac}\)
cho a,b,c >0. CMR:
+) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
+)\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
Giups mình giải mấy câu trên với
Bài 1 :
Cho a, b, c là 3 cạnh của một tam giác. Chứng minh rằng :
\(\frac{ab}{a+b-c}+\frac{bc}{b+c-a}+\frac{ac}{a+c-b}\ge a+b+c\)
Bài 2 :
Cho a, b, c khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Rút gọn : \(Q=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Bài 3 :
Chứng minh rằng với mọi a, b, c khác 0 ta luôn có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)