Giải phương trình nghiệm nguyên \(3x^2+7y^2=210\)
Giải phương trình nghiệm nguyên: 2x^2-xy+7y^3=4880
giải phương trình nghiệm nguyên sau:
\(15x^2-7y^2=9\)
\(8x^3=3^y+997\)
giúp mình vs, mình cần trước thứ 6 nhé, mik cảm ơn nhiều
giải phương trình nghiệm nguyên 3x^2+3xy+3y^2=x+8y
giải phương trình nghiệm nguyên 2x^2+3y^2-5xy+3x-2y-3=0
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
Giải phương trình nghiệm nguyên : \(x^2y^2-x^2-7y^2=4xy\)
\(x^2y^2-x^2-7y^2=4xy\)
\(\Leftrightarrow x^2+4xy+4y^2=x^2y^2-3y^2\)
\(\Leftrightarrow\left(x+2y\right)^2=y^2\left(x^2-3\right)\)
\(\Rightarrow x^2-3=n^2\)
\(\Leftrightarrow\left(x-n\right)\left(x+n\right)=3\)
\(x^2y^2-x^2-7y^2=4xy\)
\(\Leftrightarrow x^2+4xy+4y^2=x^2y^2-3y^2\)
\(\Leftrightarrow\left(x+2y\right)^2=y^2\left(x^2-3\right)\)
\(\Leftrightarrow x^2-3=y^2\)
\(\Leftrightarrow x^2-y^2=3\Leftrightarrow\left(x+y\right)\left(x-y\right)=3\)
Từ đó suy ra phương trình có nghiệm duy nhất: \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)(loại vì nếu thử lại VT = -7 , mà VP = 4xy=4.2.1 = 8 . VT không bằng VP nên phương trình vô nghiệm
x2y2−3y2=x2+4y2+4xy⇔y2(x2−3)=(x+2y)2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
y2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml"> là số chính phương
là số chính phương , nênx2−3=a2⇔x2−a2=3⇔(x−a)(x+a)=3" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
đến đây bạn lập bảng ước ra là được
Giải phương trình nghiệm nguyên
a) \(x^2-3y^2=17\)
b) \(x^2-5y^2=17\)
c) \(15x^2-7y^2=9\)
d) \(x^2+xy+y^2=x^2y^2\)
Tìm nghiệm nguyên của phương trình :4x^2 -7y^2 =2022
giải phương trình nghiệm nguyên : \(x^2 + 2y^2 + 3xy + 3x + 3y = 15\)
\(\Leftrightarrow\left(x+y\right)\left(x+2y\right)+3\left(x+y\right)=15\)
\(\Leftrightarrow\left(x+y\right)\left(x+2y+3\right)=15\)
15 có hơi nhiều cặp ước nên bạn tự lập bảng và giải nốt nhé :)
giải phương trình nghiệm nguyên sau
\(15x^2-7y^2=9\)
\(x^4+y^4+z^4+t^4=165\)
giúp mình với, mình cảm ơn (mình cần trước thứ 6)
Giải phương trình nghiệm nguyên \(3x^2+5xy-8x-2y^2-9y-4=0\)
Lời giải:
PT $\Leftrightarrow 3x^2+x(5y-8)-(2y^2+9y+4)=0$
Coi đây là pt bậc 2 ẩn $x$. Khi đó, để pt có nghiệm nguyên thì:
$\Delta=(5y-8)^2+12(2y^2+9y+4)=t^2$ với $t$ là số tự nhiên
$\Leftrightarrow 49y^2+28y+112=t^2$
$\Leftrightarrow (7y+2)^2+108=t^2$
$\Leftrightarrow 108=(t-7y-2)(t+7y+2)$
Đến đây là dạng pt tích đơn giản. Bạn chỉ cần xét các TH thôi với $t+7y+2>0$ và $t+7y+2, t-7y-2$ có cùng tính chẵn lẻ.