Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Ngoc Linh
Xem chi tiết
ST
21 tháng 4 2017 lúc 20:45

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}=\frac{1}{4}+\left(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

Ta có: \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

.............

\(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}=\frac{3}{4}-\frac{1}{100}< \frac{3}{4}\)

Vậy A < 3/4

Nguyen Ngoc Linh
21 tháng 4 2017 lúc 21:07

Thanks bạn nhiều

N.T.M.D
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 4 2021 lúc 11:46

a.

Do \(0\le x\le1\Rightarrow\left(1+x\right)^2\ge\left(x+x\right)^2=4x^2\) (đpcm)

Dấu "=" xảy ra khi \(x=1\)

b.

Do \(x;y\in\left[0;1\right]\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\end{matrix}\right.\) \(\Rightarrow x+y\ge x^2+y^2\)

\(\Rightarrow\left(1+x+y\right)^2\ge4\left(x+y\right)\ge4\left(x^2+y^2\right)\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;0\right);\left(0;1\right)\)

Nguyễn Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 9 2021 lúc 23:31

a: \(A=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

b: \(B=-x^2+4x-17\)

\(=-\left(x^2-4x+17\right)\)

\(=-\left(x^2-4x+4+13\right)\)

\(=-\left(x-2\right)^2-13< 0\forall x\)

Lấp La Lấp Lánh
24 tháng 9 2021 lúc 23:31

a) \(A=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

b) \(4x-17-x^2=-\left(x^2-4x+4\right)-13=-\left(x-2\right)^2-13\le-13< 0\)

Ruby
24 tháng 9 2021 lúc 23:51

a) A = \(x^2-x+1\) 

        = \(x^2\) - 2.\(x\).\(\dfrac{1}{2}\) + \(\left(\dfrac{1}{2}\right)^2\) + \(\dfrac{3}{4}\)

         = \(\left(x-\dfrac{1}{2}\right)^2\) + \(\dfrac{3}{4}\)

Với mọi \(x\) ta có:

            \(\left(x-\dfrac{1}{2}\right)^2\) ≥ 0

        ➩\(\left(x-\dfrac{1}{2}\right)^2\) + \(\dfrac{3}{4}\) > \(\dfrac{3}{4}\)

        ➩\(\left(x-\dfrac{1}{2}\right)^2\)  + \(\dfrac{3}{4}\) > 0

        ➩\(x^2-x+1\) > 0

         ➩ A > 0

Vậy biểu thức A = \(x^2-x+1\) luôn dương với mọi \(x\)

 

ILoveMath
Xem chi tiết
Nguyễn Vũ Khánh Tâm
Xem chi tiết
Minh Bình
Xem chi tiết
Akai Haruma
27 tháng 9 2023 lúc 0:29

Lời giải:

a.

$y'=\frac{2(1-x^2)}{(x^2+1)^2}>0, \forall x\in (0; 1)$

$\Rightarrow y$ đồng biến trên khoảng $(0;1)$
b. 

Với mọi $x>1$ thì $y'=\frac{2(1-x^2)}{(x^2+1)^2}< 0$

$\Rightarrow$ hàm số nghịch biến trên $(1;+\infty)$

 

 

changchan
Xem chi tiết
Lấp La Lấp Lánh
6 tháng 10 2021 lúc 11:40

\(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)

Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3

=> \(\left(n-1\right)n\left(n+1\right)⋮2.3=6\) 

TrịnhAnhKiệt
Xem chi tiết
Munnie
Xem chi tiết
mãnh hổ
24 tháng 3 2022 lúc 8:12

a)-3n+2<-3m+2

⇒-3n<-3m

⇒3n>3m

⇒n>m

b)5m-3<5n+7

⇔5m<5n+10

⇔m<n+2

Nguyễn Minh Hoàng
Xem chi tiết
Nguyễn Trần Thành Đạt
12 tháng 9 2021 lúc 9:50

Em ơi mình đăng bài sang bên môn toán nha