cmr
a, 1/2<1/51+1/52+....+1/100<1
b 7/12<1/21+1/22+....+1/40<1/10
Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\\ CMRA< \frac{3}{4}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}=\frac{1}{4}+\left(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.............
\(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{1}{4}+\frac{1}{2}-\frac{1}{100}=\frac{3}{4}-\frac{1}{100}< \frac{3}{4}\)
Vậy A < 3/4
Cho x,y \(\in\)[0,1] .CMR
a,\(\left(1+x\right)^2\)\(\ge\)4\(x^2\)
b,\(\left(1+x+y\right)^2\)\(\ge\)4\(\left(x^2+y^2\right)\)
a.
Do \(0\le x\le1\Rightarrow\left(1+x\right)^2\ge\left(x+x\right)^2=4x^2\) (đpcm)
Dấu "=" xảy ra khi \(x=1\)
b.
Do \(x;y\in\left[0;1\right]\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\end{matrix}\right.\) \(\Rightarrow x+y\ge x^2+y^2\)
\(\Rightarrow\left(1+x+y\right)^2\ge4\left(x+y\right)\ge4\left(x^2+y^2\right)\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;0\right);\left(0;1\right)\)
CMR
a, Biểu thức A= x^2-x+1 luôn dương với mọi x
b, Biểu thức B=4x-17-x^2 luôn âm với mọi x
a: \(A=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
b: \(B=-x^2+4x-17\)
\(=-\left(x^2-4x+17\right)\)
\(=-\left(x^2-4x+4+13\right)\)
\(=-\left(x-2\right)^2-13< 0\forall x\)
a) \(A=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
b) \(4x-17-x^2=-\left(x^2-4x+4\right)-13=-\left(x-2\right)^2-13\le-13< 0\)
a) A = \(x^2-x+1\)
= \(x^2\) - 2.\(x\).\(\dfrac{1}{2}\) + \(\left(\dfrac{1}{2}\right)^2\) + \(\dfrac{3}{4}\)
= \(\left(x-\dfrac{1}{2}\right)^2\) + \(\dfrac{3}{4}\)
Với mọi \(x\) ta có:
\(\left(x-\dfrac{1}{2}\right)^2\) ≥ 0
➩\(\left(x-\dfrac{1}{2}\right)^2\) + \(\dfrac{3}{4}\) > \(\dfrac{3}{4}\)
➩\(\left(x-\dfrac{1}{2}\right)^2\) + \(\dfrac{3}{4}\) > 0
➩\(x^2-x+1\) > 0
➩ A > 0
Vậy biểu thức A = \(x^2-x+1\) luôn dương với mọi \(x\)
CMR
a) xyz≠0, 1/x+1/y+1/z=0 thì (x2y2+y2z2+z2x2)2=2(x4y4+y4z4+z4x4)
b) x+y+z=0 thì x3+y3+z3-3xyz=0
Cho 1/c=1/2(1/a+1/b)(voi a,b,ckhac 0; b khac c). CMRa/b=a-c/c-b
Cho hàm số y= \(\dfrac{2x}{x^2+1}\). CMR
a) hàm số trên đồng biến trong khoảng(0;1)
b) hàm số trên nghịch biến với mọi x >1
Lời giải:
a.
$y'=\frac{2(1-x^2)}{(x^2+1)^2}>0, \forall x\in (0; 1)$
$\Rightarrow y$ đồng biến trên khoảng $(0;1)$
b.
Với mọi $x>1$ thì $y'=\frac{2(1-x^2)}{(x^2+1)^2}< 0$
$\Rightarrow$ hàm số nghịch biến trên $(1;+\infty)$
cmr
a) 25^40 -5 ^78 ⋮ 120
b)n^ 3 -n ⋮ 6 ( n là số nguyên )
c) p ^2 -1 ⋮ 24 ( p là số nguyên tố lẻ )
\(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
=> \(\left(n-1\right)n\left(n+1\right)⋮2.3=6\)
Cho a, b là 2 số thực phân biệt thỏa mãn a2+4a=b2+4b=1. CMR
a, a+b=-4
b,a3+b3=-76
c, a4+b4=322
cho m<n, cmr
a,-3n+2<-3m+2
b,5m-3<5n+7
a)-3n+2<-3m+2
⇒-3n<-3m
⇒3n>3m
⇒n>m
b)5m-3<5n+7
⇔5m<5n+10
⇔m<n+2
BÀI 1 RÚT GỌN CÁC BIỂU THỨC SAU
a)(3x-2)(9x²+6x+4)-3(9x³-2)
b)(x²+4)(x+2)(x-2)-(x²+3)(x²-3)
c)(x+1)³-(x-1)(x²+x+1)-3x(x+1)
BÀI 2 CMR
a)-4x²-4x-2<0 với mọi x
Em ơi mình đăng bài sang bên môn toán nha