Phương trình \(x\left(x^2-1\right)\sqrt{x-1}=0\) có bao nhiêu nghiệm
Cho phương trình: \(\left(x^2-1\right).log^2\left(x^2+1\right)-m\sqrt{2\left(x^2-1\right)}.log\left(x^2+1\right)+m+4=0\). Có bao nhiêu giá trị nguyên của tham số m thuộc [-10;10] để phương trình đã cho có 2 nghiệm phân biệt thỏa mãn \(1\le|x|\le3\)
Có bao nhiêu số nguyên dương m thỏa mãn phương trình :
\(9^{1+\sqrt{1-x^2}}-\left(m+2\right)3^{1+\sqrt{1-x^2}}+2m+1=0\) có nghiệm ?
\(1\le1+\sqrt{1-x^2}\le2\Rightarrow3\le3^{1+\sqrt{1-x^2}}\le9\)
Đặt \(3^{1+\sqrt{1-x^2}}=t\Rightarrow t\in\left[3;9\right]\)
Phương trình trở thành: \(t^2-\left(m+2\right)t+2m+1=0\)
\(\Leftrightarrow t^2-2t+1=m\left(t-2\right)\Leftrightarrow m=\dfrac{t^2-2t+1}{t-2}\)
Xét hàm \(f\left(t\right)=\dfrac{t^2-2t+1}{t-2}\) trên \(\left[3;9\right]\)
\(f'\left(t\right)=\dfrac{t^2-4t+3}{\left(t-2\right)^2}\ge0\) ; \(\forall t\in\left[3;9\right]\Rightarrow f\left(t\right)\) đồng biến trên khoảng đã cho
\(\Rightarrow f\left(3\right)\le f\left(t\right)\le f\left(9\right)\Rightarrow4\le m\le\dfrac{64}{7}\)
Có 6 giá trị nguyên của m
Có bao nhiêu giá trị nguyên m để phương trình \(x^2-4\sqrt{x^2+1}-\left(m-1\right)=0\) có 4 nghiệm phân biệt
Điều kiện xác định x∈Rx∈R.
Đặt t=√x2+1 (t≥1t≥1)
Phương trình trở thành t2−1−4t−m+1=0
⇔t2−4t=m
⇔t2−4t=m. (1)
Để phương trình có 44 nghiệm phân biệt thì phương trình (1) có hai nghiệm phân biệt lớn hơn 11.
Xét hàm số f(t)=t2−4t có đồ thị là parabol có hoành độ đỉnh x=2∈(1;+∞) nên ta có bảng biến thiên:
Dựa BBT ta thấy để (1) có hai nghiệm phân biệt lớn hơn 11 thì −4<m<−3
Vậy không có giá trị nguyên của mm thỏa mãn yêu cầu bài toán.
Cho phương trình \(\sqrt{x-1}+\sqrt{5-x}+3\sqrt{\left(x-1\right)\left(5-x\right)=m}\) Có tất cả bao nhiêu giá trị nguyên của m để phương trình trên có nghiệm
Đặt \(\sqrt{x-1}+\sqrt{5-x}=t\)
\(t\ge\sqrt{x-1+5-x}=2\)
\(t\le\sqrt{2\left(x-1+5-x\right)}=2\sqrt{2}\)
\(t^2=4+2\sqrt{\left(x-1\right)\left(5-x\right)}\Rightarrow\sqrt{\left(x-1\right)\left(5-x\right)}=\dfrac{t^2-4}{2}\)
Pt trở thành:
\(t+\dfrac{3\left(t^2-4\right)}{2}=m\Leftrightarrow\dfrac{3}{2}t^2+t-6=m\)
Xét hàm \(f\left(t\right)=\dfrac{3}{2}t^2+t-6\) với \(t\in\left[2;2\sqrt{2}\right]\)
\(-\dfrac{b}{2a}=-\dfrac{1}{3}\notin\left[2;2\sqrt{2}\right]\)
\(f\left(2\right)=2\) ; \(f\left(2\sqrt{2}\right)=6+2\sqrt{2}\) \(\Rightarrow2\le f\left(t\right)\le6+2\sqrt{2}\)
\(\Rightarrow\) Pt có nghiệm khi \(2\le m\le6+2\sqrt{2}\)
Có bao nhiêu tham số nguyên m để phương trình: \(\left(\sqrt{x+2}-\sqrt{10-x}\right)\left(x^2-10x-11\right)\left(\sqrt{3x+3-m}\right)=0\)
có đúng 2 nghiệm phân biệt
Phương trình đã cho tương đương
\(\left\{{}\begin{matrix}x\in\left[2;10\right];x\ge\dfrac{m-3}{3}\\\left[{}\begin{matrix}x=4\\x=-1\\x=11\end{matrix}\right.\end{matrix}\right.\)
Để phương trình có 2 nghiệm phân biệt thì
\(\left[{}\begin{matrix}x=4\\x=-1\\x=10\end{matrix}\right.\) không thỏa mãn điều kiện x ≥ \(\dfrac{m-3}{3}\)
⇔ \(\left[{}\begin{matrix}4< \dfrac{m-3}{3}\\-1< \dfrac{m-3}{3}\\10< \dfrac{m-3}{3}\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}m>15\\m>0\\m>33\end{matrix}\right.\) . (1)
Dựa vào trục số, (1) ⇔ m > 0
Vậy điều kiện của m là m > 0
Sai thì thứ lỗi ạ !
Cho phương trình -8(\(\sqrt{x+1}+\sqrt{8-x}\) ) + \(2\sqrt{\left(x+1\right)\left(8-x\right)}-2m=0\) tìm m để phương trình có nghiệm
Có bao nhiêu giá trị nguyên của tham số m nhỏ hơn 2021 để phương trình \(4x^2+\left(3-2m\right)x+1+2\sqrt{4x^3+x}=0\) có nghiệm
ĐKXĐ: \(x\ge0\)
- Với \(x=0\) không phải nghiệm
- Với \(x>0\) , chia 2 vế của pt cho \(x\) ta được:
\(\dfrac{4x^2+1}{x}+2\sqrt{\dfrac{4x^2+1}{x}}+3-2m=0\)
Đặt \(t=\sqrt{\dfrac{4x^2+1}{x}}\ge\sqrt{\dfrac{2\sqrt{4x^2}}{x}}=2\)
Pt trở thành: \(t^2+2t+3-2m=0\)
\(\Leftrightarrow t^2+2t+3=2m\) (1)
Pt đã cho có nghiệm khi và chỉ khi (1) có nghiệm \(t\ge2\)
Xét hàm \(f\left(t\right)=t^2+2t+3\) khi \(t\ge2\)
Do \(\left\{{}\begin{matrix}a=1>0\\-\dfrac{b}{2a}=-1< 2\end{matrix}\right.\) \(\Rightarrow f\left(t\right)\) đồng biến khi \(t\ge2\)
\(\Rightarrow f\left(t\right)\ge f\left(2\right)=11\)
\(\Rightarrow\) Pt có nghiệm khi \(2m\ge11\Rightarrow m\ge\dfrac{11}{2}\)
Cho phương trình \(m^2+m\left(x^2-3x-4-\sqrt{x+7}\right)-\left(x^2-3x-4\right)\sqrt{x+7}=0\) ,với m là tham số.
Có tất cả bao nhiêu số nguyên tố m để phương trình có số nghiệm thực nhiều nhất ?
ĐKXĐ: ...
\(\Leftrightarrow m^2+m\left(x^2-3x-4\right)-m\sqrt{x+7}-\left(x^2-3x-4\right)\sqrt{x+7}=0\)
\(\Leftrightarrow m\left(x^2-3x-4+m\right)-\sqrt{x+7}\left(x^2-3x-4+m\right)=0\)
\(\Leftrightarrow\left(m-\sqrt{x+7}\right)\left(x^2-3x-4+m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{x+7}\left(1\right)\\m=-x^2+3x+4\left(2\right)\end{matrix}\right.\)
Với \(m\) nguyên tố \(\Rightarrow\) (1) luôn có đúng 1 nghiệm
Để pt có số nghiệm nhiều nhất \(\Rightarrow\) (2) có 2 nghiệm pb
\(\Rightarrow y=m\) cắt \(y=-x^2+3x+4\) tại 2 điểm pb thỏa mãn \(x\ge-7\)
\(\Rightarrow-66\le m\le\dfrac{25}{4}\Rightarrow m=\left\{2;3;5\right\}\)
c1: Rút gọn biểu thức A=\(\left(\dfrac{1}{x-2\sqrt{x}}-\dfrac{2}{6-3\sqrt{x}}\right):\left(\dfrac{2}{3}+\dfrac{1}{\sqrt{x}}\right)\)
c2: Cho phương trình: \(x^2-2\left(2m-1\right)x+m^2-4m=0\left(1\right)\)
Tìm m để phương trình (1) có hai nghiệm phân biệt x1, x2 thoả mãn hệ thức \(x_1+x_2=\dfrac{-8}{x_1+x_2}\)
1:
\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)
\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)