Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Nhật Minh
Xem chi tiết
Nguyễn Hoàng Minh
4 tháng 11 2021 lúc 8:48

\(a,=3\sqrt{5}-2\sqrt{5}-\sqrt{5}+5\sqrt{5}=5\sqrt{5}\\ b,=9\sqrt{a}-6\sqrt{a}-\sqrt{a}=2\sqrt{a}\\ c,Sửa:3\sqrt[3]{27}-3\sqrt[3]{-8}-3\sqrt[3]{-125}\\ =3\cdot3-3\left(-2\right)-3\left(-5\right)\\ =9+6+15=30\)

Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 21:08

Bài 1:

a) Ta có: \(\left(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}}+\sqrt{5}\right)\)

\(=\left(\sqrt{5}+\sqrt{5}-\dfrac{5}{4}\cdot\dfrac{2}{\sqrt{5}}+\sqrt{5}\right)\)

\(=3\sqrt{5}-\dfrac{1}{2}\sqrt{5}\)

\(=\dfrac{5}{2}\sqrt{5}\)

c) Ta có: \(\dfrac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)

\(=\dfrac{\sqrt{35}\left(\sqrt{5}-\sqrt{7}+2\sqrt{2}\right)}{\sqrt{35}}\)

\(=2\sqrt{2}+\sqrt{5}-\sqrt{7}\)

Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 22:44

Bài 2:

e) ĐKXĐ: \(\dfrac{4}{3}\le x\le6\)

Ta có: \(\sqrt{6-x}=3x-4\)

\(\Leftrightarrow6-x=\left(3x-4\right)^2\)

\(\Leftrightarrow9x^2-24x+16+6-x=0\)

\(\Leftrightarrow9x^2-25x+22=0\)

\(\Delta=\left(-25\right)^2-4\cdot9\cdot22=625-792< 0\)

Vậy: Phương trình vô nghiệm

 

Chung Tran
Xem chi tiết
Trên con đường thành côn...
23 tháng 8 2021 lúc 9:40

undefined

Trên con đường thành côn...
23 tháng 8 2021 lúc 9:46

undefined

ILoveMath
23 tháng 8 2021 lúc 9:44

Bài 1:

a, \(\left(x-y+2z\right)^2=x^2+y^2+4z^2-2xy-4yz+4zx\)

b, \(\left(2x-3\right)\left(2x+3\right)\left(4x^2+9\right)=\left(4x^2-9\right)\left(4x^2+9\right)=16x^4-81\)

 

Lê Hương Giang
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 7 2021 lúc 12:34

a)\(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}=\sqrt{\dfrac{1}{2}\left(16+8\sqrt{3}\right)}-\sqrt{\dfrac{1}{2}\left(16-8\sqrt{3}\right)}\)

\(=\sqrt{\dfrac{1}{2}\left(2+2\sqrt{3}\right)^2}-\sqrt{\dfrac{1}{2}\left(2-2\sqrt{3}\right)^2}\)\(=\sqrt{\dfrac{1}{2}}\left(2+2\sqrt{3}\right)-\sqrt{\dfrac{1}{2}}\left(2\sqrt{3}-2\right)=2\sqrt{2}\)

b)\(=\dfrac{\sqrt{16+2.4\sqrt{5}+5}}{4+\sqrt{5}}.\sqrt{\left(2-\sqrt{5}\right)^2}\)\(=\dfrac{\sqrt{\left(4+\sqrt{5}\right)^2}}{4+\sqrt{5}}\left|2-\sqrt{5}\right|=\sqrt{5}-2\)

Nguyễn Lê Phước Thịnh
5 tháng 7 2021 lúc 12:48

a) Ta có: \(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}\)

\(=\sqrt{6}+\sqrt{2}-\sqrt{6}+\sqrt{2}\)

\(=2\sqrt{2}\)

b) Ta có: \(\dfrac{\sqrt{21+8\sqrt{5}}}{4+\sqrt{5}}\cdot\sqrt{9-4\sqrt{5}}\)

\(=\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)\)

=16-5=11

Ly Ly
Xem chi tiết
Yeutoanhoc
29 tháng 6 2021 lúc 8:03

`a)2sqrt{48}-4sqrt{27}+sqrt{75}+sqrt{12}`

`=8sqrt3-12sqrt3+5sqrt3+2sqrt3`

`=3sqrt3`

`b)sqrt{(3-sqrt5)^2}-sqrt{20}`

`=3-sqrt5-2sqrt5`

`=3-3sqrt5`

2 câu cuối không rõ đề :v

TrịnhThuHường
Xem chi tiết
Phạm Thị Thùy Linh
1 tháng 12 2019 lúc 8:17

\(A=\sqrt{5}.\left(\sqrt{20}-3\right)+\sqrt{45}.\)

\(=\sqrt{5}.\left(\sqrt{4.5}-3\right)+\sqrt{9.5}\)

\(=\sqrt{5}.\left(2\sqrt{5}-3\right)+3\sqrt{5}\)

\(=\sqrt{5}.2\sqrt{5}-3\sqrt{5}+3\sqrt{5}\)

\(=2.\sqrt{5}^2=2.5=10\)

Khách vãng lai đã xóa
Phùng Ngọc Linh
Xem chi tiết
Minh Joyce
Xem chi tiết
friknob
20 tháng 8 2021 lúc 18:33

1.
A= \(2\sqrt{6}\) + \(6\sqrt{6}\) - \(8\sqrt{6}\)
A= 0
2.
A= \(12\sqrt{3}\) + \(5\sqrt{3}\) - \(12\sqrt{3}\)
A= 0
3.
A= \(3\sqrt{2}\) - \(10\sqrt{2}\) + \(6\sqrt{2}\)
A= -\(\sqrt{2}\)
4.
A= \(3\sqrt{2}\) + \(4\sqrt{2}\) - \(\sqrt{2}\)
A= \(6\sqrt{2}\)
5.
M= \(2\sqrt{5}\) - \(3\sqrt{5}\) + \(\sqrt{5}\)
M= 0
6.
A= 5 - \(3\sqrt{5}\) + \(3\sqrt{5}\)
A= 5

This literally took me a while, pls sub :D
https://www.youtube.com/channel/UC4U1nfBvbS9y_Uu0UjsAyqA/featured

DuyHungWW
Xem chi tiết
DuyHungWW
25 tháng 7 2023 lúc 21:49

Giúp mình vớiiii

 

Nguyễn Lê Phước Thịnh
25 tháng 7 2023 lúc 22:06

a: \(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b: \(=\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+5}{\sqrt{x}-2}\)

Hà Quang Minh
25 tháng 7 2023 lúc 22:20

a, \(\dfrac{x-3\sqrt{x}+2}{x-\sqrt{x}-2}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b, \(\dfrac{x+6\sqrt{x}+5}{x-\sqrt{x}-2}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-=\dfrac{\sqrt{x}+5}{\sqrt{x}-2}\)