thu gọn
\(P(x)=-x(x+5)-(2x-3)+x^2(3x-2)\)
Thu gọn các đa thức sau:
a) P(x) = −x(x + 5) − (2x − 3) + x^2(3x − 2)
b) Q(x) = 2x(x + 1) + 3x(5 − x) − 7(x − 5).
a) \(P\left(x\right)-x\left(x+5\right)-\left(2x-3\right)+x^2\left(3x-2\right)\)
\(P\left(x\right)=-x^2-5x-2x+3+3x^3-2x^2\)
\(P\left(x\right)=3x^3+\left(-x^2-2x^2\right)-\left(5x+2x\right)+3\)
\(P\left(x\right)=3x^3-3x^2-7x+3\)
b) \(Q\left(x\right)=2x\left(x+1\right)+3x\left(5-x\right)-7\left(x-5\right)\)
\(Q\left(x\right)=2x^2+2x+15x-3x^2-7x+35\)
\(Q\left(x\right)=-x^2+10x+35\)
a: P(x)=-x^2-5x-2x+3+3x^3-2x^2
=3x^3-3x^2-7x+3
b: Q(x)=2x^2+2x+15x-3x^2-7x+35
=-x^2+10x+35
Thu gọn biểu thức:
a) (x^2-1)(x+2)-(x-2)(x^2+2x+4)
b) (x-2)(x+3) - (x-5)(x+5) - (2x-3)
c) (3x-1)^2 + (2x+1)^2 - 2(3x-1)(2x+1)
thu gọn
\(2x(x-2)+5(x+3)+3(x+1)\)
\(5x^2-2(x+1)+3x(x-2)+5\)
\(2x\left(x-2\right)+5\left(x+3\right)+3\left(x+1\right).\)
\(=2x^2-4x+5x+15+3x+3=2x^2+4x+18.\)
\(5x^2-2\left(x+1\right)+3x\left(x-2\right)+5.\)
\(=5x^2-2x-2+3x^2-6x+5=8x^2-8x+3.\)
Thu gọn và sắp xếp các hạng tử của đa thức theo lũy thừa tăng dần của biến: a) P(x) = x 5 - 2x 4 + 3x + 3 + 3x 4 - 2x - x 5 - x .
b) Q(x ) = 3x 4 - x 3 - 3x 4 - 2x + 3x 2 + 1 - 12x - 2 - x 2 .
a)\(P\left(x\right)=x^4+3\)
b)\(Q\left(x\right)=-x^3-2x^2-14x-1\)
Thu gọn biểu thức
(6x+1)(2x-5)
(2x+5)2-2x(2x+8)
(3x-5)(2x-1)-(2x+3)(3x+7)+30x
(X-1)2-(x+1)(x-1)
(3x+2)(9x2-6x+4)-(3+x)(x-3)
(6x+1)(2x-5)=12x2-30x+2x-5=12x2-28x-5
(2x+5)2-2x(2x+8)=4x2+20x+25-4x2-16x=4x+25
(3x-5)(2x-1)-(2x+3)(3x+7)+30x=6x2-3x-10x+5=6x2-13x+5
(X-1)2-(x+1)(x-1)=x2-2x+1-x2+1=-2x+2
(3x+2)(9x2-6x+4)-(3+x)(x-3)=27x3+8+9-x2=27x3-x2+17
1. Thu gọn biểu thức
a) (x-3) ² + 3x (x-5)
b) (3x+2) ² - (x+3) (x-3)
2. Tìm x biết a) (x+4) ² - (x+2) (x-2)=5
b) (3x-1) ² _ (2x-3) (4x+1)= 5+x ²
1. Thu gọn biểu thức - Hoc24 làm rồi mà bạn?
1.
a) \(=x^2-6x+9+3x^2-15x=4x^2-21x+9\)
b) \(=9x^2+12x+4-x^2+9=8x^2+12x+13\)
2.
a) \(\Leftrightarrow x^2+8x+16-x^2+4-5=0\\ \Leftrightarrow8x=-15\\ \Leftrightarrow x=-\dfrac{15}{8}\)
b) \(\Leftrightarrow9x^2-6x+1-8x^2+12x-2x+3-5-x^2=0\\ \Leftrightarrow4x=1\\ \Leftrightarrow x=\dfrac{1}{4}\)
1,a,=x2−6x+8+3x2−15x=4x2−21x+8b,=9x2+12x+4−x2+9=8x2+12x+132,a,⇔x2+8x+16−x2+4=5⇔8x=−15⇔x=−158b,⇔9x2−6x+1−8x2−2x+12x+3−x2=5⇔4x=1⇔x=14
Thu gọn các biểu thức : a) 6x^2y(3xy-2xy^2+y) b) (-3x+2)(5x^2-1/3x+4) c) (x+1)(x-2)+x(3-x) d) (2x+3)^2-(2x-5)(2x+5)-(x-1)(x^12+12)
a: =18x^3y^2-12x^3y^3+6x^2y^2
b: (-3x+2)(5x^2-1/3x+4)
=-12x^3+x^2-12x+10x^2-2/3x+8
=-12x^3+11x^2-38/3x+8
c: =x^2-x-2+3x-x^2
=2x-2
d: =4x^2+12x+9-4x^2+25-(x-1)(x^2+12)
=12x+34-x^3-12x+x^2+12
=-x^3+x^2+46
cho 2 đa thức p(x) =3x^2+2x^3+2x+5-x^2-x-5 Q(x)= x^3-2x-2+3x-x^2+1
thu gọn và sắp xếp theo lũy thừa giảm
tính P(x)+Q(x) và P(x)-Q(x)
a) \(P_{\left(x\right)}=3x^2+2x^3+2x+5-x^2-x-5\)
\(P_{\left(x\right)}=2x^3+2x^2+x\)
\(Q_{\left(x\right)}=x^3-2x-2+3x-x^2+1\)
\(Q_{\left(x\right)}=x^3-x^2+x-1\)
b) ta có: \(P_{\left(x\right)}+Q_{\left(x\right)}=\left(2x^3+2x^2+x\right)+\left(x^3-x^2+x-1\right)\)
\(=\left(2x^3+x^3\right)+\left(2x^2-x^2\right)+\left(x+x\right)-1\)
\(=3x^3+x^2+2x-1\)
ta có: \(P_{\left(x\right)}-Q_{\left(x\right)}=\left(2x^3+2x^2+x\right)-\left(x^3-x^2+x-1\right)\)
\(=\left(2x^3-x^3\right)+\left(2x^2+x^2\right)+\left(x-x\right)+1\)
\(=x^3+3x^2+1\)
thu gọn M(x)=2x(x-3)-5(x-2)+3x2
N(x)=-x(x+1)-(3x-4)+x2(2x-3)
M(x)-N(x)-x2(x+6)
\(M\left(x\right)=2x\left(x-3\right)-5\left(x-2\right)+3x^2\)
\(=2x^2-6x-5x+10+3x^2\)
\(=5x^2-11x+10\)
\(N\left(x\right)=-x\left(x+1\right)-\left(2x-4\right)+x^2\left(2x-3\right)\)
\(=-x^2-x-2x+4+2x^3-3x^2\)
\(=2x^3-4x^2-3x+4\)
\(M\left(x\right)-N\left(x\right)-x^2\left(x+6\right)\)
\(=5x^2-11x+10-\left(2x^3-4x^2-3x+4\right)-x^2\left(x+6\right)\)
\(=5x^2-11x+10-2x^3+4x^2+3x-4-x^3-6x^2\)
\(=-3x^3+3x^2-8x+6\)