Cho A= 1+2+2 mũ 2+......+2 mũ 50
Tính C= B-A trong đó B= 2 mũ 51
Baif2: Tìm x
a. 3 mũ 2 . x + 2 mũ 3 . x =51
b. 6 mũ 2 . 2 - (84 - 3 mũ 2 . x): 7 = 69
c. (x + 1) mũ 2= 64
e. (x - 1) mũ 2 = (x - 1) mũ 3
d. (2x + 1) mũ 3 = 27
g. 3 mũ x +2 =81
a) \(3^2.x+2^3.x=51\)
\(\Leftrightarrow x\left(3^2+2^3\right)=51\)
\(\Leftrightarrow17x=51\)
\(\Leftrightarrow x=3\)
Vậy
b) \(6^2.2-\left(84-3^2.x\right):7=69\)
\(\Leftrightarrow\left(84-3^2.x\right):7=3\)
\(\Leftrightarrow84-3^2.x=21\)
\(\Leftrightarrow3^2.x=63\)
\(\Leftrightarrow x=7\)
Vậy
c) \(\left(x+1\right)^2=64\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=8\\x+1=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-9\end{cases}}}\)
Vậy
Cho đa thức : A= x mũ 2 - 2y mũ 2 + xy + 1 B= x mũ 2 + y mũ 2 - x mũ 2 y mũ 2 - 1 Tính C biết : a) C=A+B b) C+A=B
a) Ta có: C=A+B
\(=x^2-2y^2+xy+1+x^2+y^2-x^2y^2-1\)
\(=2x^2-y^2-x^2y^2+xy\)
b) Ta có: C+A=B
nên C=B-A
\(=x^2+y^2-x^2y^2-1-x^2+2y^2-xy-1\)
\(=3y^2-x^2y^2-xy-2\)
MÌNH LÀM CÓ PHẦN a) THÔI MONG BẠN THÔNG CẢM
a) Do C=A+B. Suy ra:
C=(x^2 - 2y^2 + xy + 1)+(x^2 + y^2 - x^2y^2 - 1)
C=x^2 - 2y^2 + xy + 1 + x^2 + y^2 - x^2y^2 - 1
C=(x^2 + x^2)-(2y^2 - 2y^2) + xy + x^2y^2 +(1-1)
C=2x^2 - 0 + xy + x^2y^2 + 0
C=2x^2 + xy + x^2y^2
Chứng minh A = 1 + 2 + 2 mũ 2 + ........ + 2 mũ 119 chia hết cho 3,7,17,31
Cho A = 1 + 2 mũ 1 + 2 mũ 2 + ........ + 2 mũ 100 + 2 mũ 101 chứng minh A : 7v
\(A=1+2+2^2+2^3+...+2^{119}\)
\(2A=2+2^2+2^3+...+2^{120}\)
\(2A-A=\left(2+2^2+2^3+...+2^{120}\right)-\left(1+2+2^2+2^3+...+2^{119}\right)\)
\(A=2^{120}-1\)
Có \(120\)chia hết cho các số \(2,3,8,5\)nên \(A\)chia hết cho \(2^2-1=3,2^3-1=7,2^8-1=255=17.15,2^5-1=31\).
Suy ra đpcm.
\(A=1+2^1+2^2+...+2^{100}+2^{101}\)
\(=\left(1+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{99}+2^{100}+2^{101}\right)\)
\(=\left(1+2^1+2^2\right)+2^3\left(1+2^1+2^2\right)+...+2^{99}\left(1+2^1+2^2\right)\)
\(=7\left(1+2^3+...+2^{99}\right)\)chia hết cho \(7\).
cho các số nguyên a,b,c thỏa mãn
2014a mũ 2 + b mũ 2 + c mũ 2 / a mũ 2 = a mũ 2 + 2014b mũ 2 + c mũ 2 / b mũ 2 = a mũ 2 + b mũ 2 + 2014c mũ 2 / c mũ 2
tính giá trị biểu thức P = 2015a mũ 2+ b mũ 2 / c mũ 2 + 2015b mũ 2 + c mũ 2 / a mũ 2 + 2015c mũ 2 + a mũ 2 / b mũ 2
Làm ơn viết cái đề rõ hơn dc ko vậy?
\(2014a^2+b^2+c^2\) / \(a^2\) = \(a^2+2014b^2+c^2\) /b\(^2\) = \(a^2+b^2+2014c^2\) /c\(^2\)
P = \(2015a^2+b^2\) /c\(^2\) + \(2015b^2\) +\(c^2\) / a\(^2\) + 2015\(c^2+a^2\)/b\(^2\)
cho a, b, c là các số nguyên thoả mãn a+b+c = 1 mũ 2 + 2 mũ 2+...+2021 mũ 2 . chứng tỏ a mũ 2+b mũ 2+c mũ 2 là số lẻ
Ta có: \(1^2+3^2+5^2+...+2021^2\) tổng trên có \(\left(2021-1\right)\div2+1=1011\)số hạng
do đó \(1^2+3^2+5^2+...+2021^2\)là số lẻ nên \(a+b+c=1^2+2^2+3^2+...+2021^2\)là số lẻ.
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)
\(\left(a+b+c\right)^2\)là số lẻ, \(2\left(ab+bc+ca\right)\)là số chẵn
nên \(a^2+b^2+c^2\)là số lẻ.
B1 Tìm a,b,c biết acc ngang . 5 = bcc ngang . 2 B2 Cho 2006 đường thẳng trong đó có bất kì 2 đường thẳng nào cũng cắt nhau . Ko có 3 đường thẳng nào đồng qui . Tính số giao điểm của chúng B3 Tìm x a, 3 mũ 2x = 81 b, 5 mũ 2x trừ 3 -2.5 mũ 2 = 5 mũ 2 .3 B4 Cho S = 3 mũ 0 + 3 mũ 2+ 3 mũ 4 + 3 mũ 6+........+3 mũ 2002 a, Tính S b,Chứng minh S chia hết cho 7 B5 Cho 20 điểm , trong đó có a điểm thẳng hàng .Cứ 2 điểm ta vẽ được 1 đường thẳng . Tìm a , biết bẽ được tất cả 170 đường thẳng
Chứng minh các đẳng thức sau:
1. ( a + b ) mũ 2 = ( a - b ) mũ 2 + 4ab
2. a mũ 4 - b mũ 4 = ( a - b ) ( a + b ) ( a mũ 2 + b mũ 2 )
3. ( a mũ 2 + b mũ 2 ) ( x mũ 2 + y mũ 2 ) = ( ax - by ) mũ 2 + ( bx + ay ) mũ 2
Cho a/b = b/c ( a,b,c khác 0) CM a mũ 2 + b mũ 2/ b mũ 2 + c mũ 2 = ( a+ 2018b) mũ 2/ (b+2018c) mũ 2
cho a = 1 +4 + 4 mũ 2 + 4 mũ 3 + 4 mũ 4 + 4 mũ 5 + 4 mũ 6 và b = 4 mũ 7 tính b -3a
cho a = 2 mũ 0 + 2 mũ 1 + 2 mũ 2 + ... +2 mũ 2008 và b = 2 mũ 2009 tính b - a
cho a = 1 +3 + 3 mũ 3 + ... +3 mũ 2006 và b = 2007 tính b - 2a
Ta có công thức tổng quát như sau:
\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)
Áp dụng ta có:
\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\)
\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)
______
\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)
\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)
_____
\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)
\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)