chứng minh rằng : 1/25+1/26+1/27+...+1/54 <39/40
chứng minh rằng : 1/25+1/26+1/27+...+1/54 <39/40
đặt vế trái là A ta có
A<1/25.16+1/45.14=214/225=1-11/225
39/40=1-1/40
ta có 1.225<11.40=>1/40<11/225=>1-1/40>1-11/225=>214/225<39/40 mà A<214/225=>A<39/40(đpcm
nhớ k cho mk nha
P= 1+2+22+23+24+25+26+27+28. Chứng minh rằng P chia hết cho 3
CMR : A = 1/25 + 1/26 + 1/27 +......+1/54 < 39/40
Ta có : 1/25 + 1/26 + 1/27 +.....+1/39 < 1/25 + 1/25 + .....+1/25 = 15/25 = 3/5
1/40+1/41 +.....+1/54 < 1/40 + 1/40 +....+1/40 = 15/40 = 3/8
=> A = 1/25 + 1/26 + 1/27 +.......+1/54 < 3/5 + 3/8 = 39/40
=> A < 39/40 (đpcm)
Chứng minh rằng: (1/26+1/27+...+1/50)÷(1/1.2+1/3.4+...+1/49.50)=1
Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
Khi đó : \(\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right):\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)\)
\(=\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right):\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right)=1\) (đpcm)
Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
= \(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
= \(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
Khi đó \(\frac{\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}}{\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}}=\frac{\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}}{\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}}=1\left(\text{đpcm}\right)\)
1: Chứng minh rằng: 0,999...999 = 1(vô số c/s 9)
2 : Chứng minh rằng: 54 x 3 = 27
Lm dc ms giỏi
Chứng minh rằng 1/26 + 1/27 + 1/28 +...+ 1/50 = 1 - 1/2 + 1/3 - 1/4 +...+ 1/49 - 1/50
Ta có: \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\left(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)(đpcm)
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\) (đpcm)
Giải:
\(\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
Ta có:
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}-\left(1+\dfrac{1}{2}+...+\dfrac{1}{25}\right)\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\left(đpcm\right)\)
Chứng minh rằng 1/1.2 + 1/2.3 + 1/3.4 +........+1/49+50 = 1/26 + 1/27 +1/28 +.....+ 1/50
1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50
=1/1-1/2+1/3-1/4+...+1/49-1/50
=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)
=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)
=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25
=1/26+1/27+...+1/50 (đpcm)
Chứng Minh Rằng: 1/1.2+1/3.4/1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50
Bài 1:tính
a, A = 25/6+25/6.11+25/11.16+...+25/41.46
b, B= 1/10+1/15+1/21+...+1/120
Bài 2: Chứng minh rằng:
1/2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50
bài 3: tìm y
(y - 1/2).(1/2+1/6+1/12+1/20+.....+1/90) = 1/3
b1/A=25/1.6+25/6.11+25/11.16+....+25/41.46
=5.(5/1.6+5/6.11+5/11.16+...+5/41.46)
=5.(1/1-1/6+1/6-1/11+1/11-1/16+....+1/41-1/46)
=5.(1/1-1/46)
=5.45/46
=225/46