1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50
=1/1-1/2+1/3-1/4+...+1/49-1/50
=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)
=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)
=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25
=1/26+1/27+...+1/50 (đpcm)
1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50
=1/1-1/2+1/3-1/4+...+1/49-1/50
=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)
=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)
=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25
=1/26+1/27+...+1/50 (đpcm)
Cho A= 1/1.2 +1/2.3 +1/3.4 +......+1/49+50. Chứng minh rằng 7/ 12 < A < 5/6
Cho :A=1/1.2 +1/2.3 + 1/3.4 + .......+1/49+50. Chứng minh rằng 7/12 < A < 5/6.
8 Chứng minh rằng :
a) \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}< 1\) ; b) \(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\dfrac{99.100}{100!}\)
c) \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\)
d) \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}< \dfrac{1}{2}\)
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
Chứng minh rằng: \(\frac{7}{12}< A< \frac{5}{6}\)
Các bạn giúp mk với mk cần gấp thank you!!!
Giúp mk bài này nhé, ko đc trêu gì cả. I help me!
Bài4: Chứng minh
1/1.2 +1/3.4 +1/5.6 +1/6.7 +...+ 1/49.50= 1/26 +1/27 +...+ 1/50
1.Chứng minh rằng:
a) \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
b) Cho A = \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
Chứng minh \(\dfrac{7}{12}< A< \dfrac{5}{6}\)
2. Tìm a, b \(\in\) Q, biết
a - b = a.b = a : b
1.Tìm số hữu tỉ x:
a)\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
b)\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
2.CMR:
a)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
b)Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
Chứng minh rằng : \(\frac{7}{12}< A< \frac{5}{6}\)
Cho A = 1/1.2 + 1/3.4 + 1/5.6 +...+ 1/49.50
B = 1/1 + 1/2 + 1/3 + 1/4 + ... + 1/49 + 1/50
C = 1/2 + 1/4 + 1/6 +...+1/48 + 1/50
CMR : A = B - 2C
Chứng minh rằng : \(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+......+\dfrac{99.100-1}{100!}< 2\)
GIÚP MÌNH VỚI