Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Quang Dũng

8​ Chứng​ minh rằng​ :

a) \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}< 1\) ; b) \(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\dfrac{99.100}{100!}\)

c) \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\)

d) \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}< \dfrac{1}{2}\)

Nguyễn Huy Tú
26 tháng 7 2017 lúc 16:46

a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)

\(\Rightarrowđpcm\)

d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)

\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)

\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)

\(\Rightarrowđpcm\)

Nguyễn Huy Tú
26 tháng 7 2017 lúc 16:52

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(\Rightarrowđpcm\)

NGUYỄN CẨM TÚ
26 tháng 7 2017 lúc 16:44

Đặt A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+.......+\dfrac{1}{3^{99}}\)

=> 3A=1+\(\dfrac{1}{3}+\dfrac{1}{3^2}+..........+\dfrac{1}{3^{98}}\)

=> 3A-A= 1-\(\dfrac{1}{3^{99}}\)

=> A=\(\dfrac{1}{2}-\dfrac{1}{3^{99}.2}\)

=> A<1/2

Vậy A<1/2


Các câu hỏi tương tự
Teresa Mai
Xem chi tiết
hoàng bắc nguyệt
Xem chi tiết
Bùi Khánh Ly
Xem chi tiết
Lê Quang Dũng
Xem chi tiết
Nguyễn Trọng Đức
Xem chi tiết
0o0^^^Nhi^^^0o0
Xem chi tiết
Hoàng Phương Anh
Xem chi tiết
Trần Thị Trà My
Xem chi tiết
Trang Rabbit
Xem chi tiết