Chứng minh rằng : \(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+......+\dfrac{99.100-1}{100!}< 2\)
GIÚP MÌNH VỚI
8 Chứng minh rằng :
a) \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}< 1\) ; b) \(\dfrac{1.2-1}{2!}+\dfrac{2.3-1}{3!}+\dfrac{3.4-1}{4!}+...+\dfrac{99.100}{100!}\)
c) \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\)
d) \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}< \dfrac{1}{2}\)
1.Chứng minh rằng:
a) \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
b) Cho A = \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
Chứng minh \(\dfrac{7}{12}< A< \dfrac{5}{6}\)
2. Tìm a, b \(\in\) Q, biết
a - b = a.b = a : b
9 Cho A= \(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}.\) Chứng minh rằng : \(\dfrac{7}{12}< A< \dfrac{5}{6}\)
6)
a) cho các số a,b,c ,d thỏa mãn :\(\dfrac{a}{b+c+d}=\dfrac{b}{c+d+a}\dfrac{c}{d+a+b}\dfrac{d}{a+b+c}\)
tính giá trị của biểu thức P= \(\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}=\dfrac{c+d}{b+a}=\dfrac{d+a}{b+c}\)
b) tìm x biết : \(\left|x+\dfrac{1}{1.2}\right|+\left|x+\dfrac{1}{2.3}\right|+\left|x+\dfrac{1}{3.4}\right|+...+\left|x+\dfrac{1}{99.100}\right|=100x\)
7) 3 phân số tối giản có tổng bằng \(\dfrac{213}{70}\), các tử của chúng tỉ lệ với 3,4,5 các mẫu của chúng tỉ lệ với 5,1,2 . Tìm 3 phân số đó
8) Tìm số tự nhiên n có 2 chữ số biết rằng 2 số (2n+1) và (3n+1) đồng thời là số chính phương
Bai 1: Tinh :
A= 1-2+3-4+4-5+...+99-100
B = 1.2+2.3+3.4+4.5+...+99.100
CMR: \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)
Tính các tổng sau:
a) A=\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)
b) B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{102^2}\)
c) C=\(\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+\dfrac{3}{1+2+3+4}+...+\dfrac{3}{1+2+3+...+100}\)
CM:
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2+10^2}< 1\)