cho tam giác ABC, gọi D và E lần lượt là trung điểm của cạnh AB, AC. Chứng minh rằng:DE// BC và DE=1/2 BC.
Cho tam giác ABC. Trên tia đối của các tia AB, AC lần lượt lấy các điểm D và E sao cho AD= AB và AE= AC
a) Chứng minh: tam giác ABC= tam giác ADE
b) Chứng minh DE // BC
c) Gọi M, N lần lượt là trung điểm của BC và DE. Chứng minh A là trung điểm của MN
Cho tam giác ABC , D và E lần lượt nằm trên các cạnh AB và AC sao cho DE//BC và DE=BC/2 .Đường thẳng qua E song song với AB cắt BC ở M .
a) Chứng minh DE=BM và tam giác ADE=tam giác EMC
b) Chứng minh D là trung điểm cạnh AB.
a: Xét tứ giác BDEM có
DE//BM
BD//EM
Do đó: BDEM là hình bình hành
Suy ra: DE=BM
mà DE=BC/2
nên BM=BC/2
hay M là trung điểm của BC
Xét ΔADE và ΔEMC có
\(\widehat{A}=\widehat{CEM}\)
DE=MC
\(\widehat{ADE}=\widehat{EMC}\)
Do đó: ΔADE=ΔEMC
b: Xét ΔABC có
DE//BC
nên AD/AB=DE/BC
=>AD/AB=1/2
=>AD=1/2AB
hay D là trung điểm của AB
Cho tam giác ABC có ba gócnhọn (AB < AC).Gọi D,E lần lượt là trung điểm của các cạnh AB và AC.a)Chứng minh: DE// BC.b)Gọi F là trung điểm của BC. Chứng minh tứ giác BDEF là hình bình hành.c)Kẻ AH BC (H thuộc BC). Chứng minh tứ giác DEFH là hình thang cân.d)Chứng minh: A và H đối xứng nhau qua DE
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó: I là trung điểm của AH
Cho tam giác ABC, Gọi D và E lần lượt là trung điểm của AB và AC. Vẽ điểm F sao cho E là trung điểm của DF.
a) Chứng minh CF = BD
b) Chứng minh tam giác ADC = tam giác FCD
c)DF//BC và DE=1/2 BC
a) xét tam giác ADE và tam giác FEC, ta có:
+) AE = EC (E là trung điểm của AC)
+) DE = EF (E là trung điểm của DF)
\(\widehat{ADE}=\widehat{CEF}\)(hai góc đối đỉnh)
=> \(\Delta ADE=\Delta FEC\) (c = g = c)
=> AD = CF (2 cạnh tương ứng)
mà AD = DB (D là trung điểm của AB)
nên: CF = BD
b) ta có:
\(\widehat{EAD}=\widehat{ECF}\left(\Delta ADE=\Delta FEC\right)\)
mà góc EAD và góc ECF nằm so le
nên AD//CF hay AB//CF
xét tam giác BDC và tam giác DCF, ta có:
BD = CF (Cm a)
DC = DC
\(\widehat{BDC}=\widehat{FCD}\)(2 góc so le trong và AB//CF)
=> \(\Delta BDC=\Delta DCF\)(c = g = c)
c) ta có:
\(DE=\frac{1}{2}DF\)(E là trung điểm DF)
DF = BC \(\left(\Delta FCD=\Delta BDC\right)\)
=> \(DE=\frac{1}{2}BC\)
cho tam giác ABC . trên tia dối của tia AB,AC lần lượt lấy các điểm D và E sao cho AD=AE và AE=AC . chứng minh DE song song BC. gọi M,N lần lượt là trung điểm của BC và DE . chứng minh A là trung điểm của MN
a: Xét ΔCAB có CE/CA=CD/CB
nên ED//AB và ED=AB/2
=>AEDB là hình thang
mà góc EAB=90 độ
nênAEDB là hình thang vuông
b: Xét tứ giác ABKC có
D là trung điểm chung của AK và BC
góc BAC=90 độ
Do đó: ABKC là hình chữ nhật
Cho tam giác ABC có AC > AB. Đường tròn tâm I nội tiếp tam giác ABC tiếp xúc với AB và BC lần lượt tại D và E. Gọi M và N theo thứ tự là trung điểm của cạnh AC và BC. Gọi K là giao điểm của MN và AI. Gọi H là giao điểm của DE và CI. Chứng minh rằng:
a) Bốn điểm I, E, K, C cùng thuộc một đường tròn.
b) Ba điểm D, E, K thẳng hàng.
c) Bốn điểm A, H, K, C cùng thuộc một đường tròn.
Cho tam giác ABC. Gọi D và E lần lượt là trung điểm của AB, AC. Vẽ điểm F sao cho E là trung điểm của DF. Chứng minh rằng:
a) Tam giác BDC = Tam giác FCD
b) DE \(//\)BC và DE = 1/2 BC
Cho tam giác ABC vuông tại A. Gọi D,E,F lần lượt là trung điểm của các cạnh BC, AB, AC. Chứng minh rằng:
a. DE//AC, DF//AB.
b. Tứ giác AEDF là hình chữ nhật.
c. Gọi M và N lần lượt là các điểm đối xứng với D qua AB và AC. Chứng minh M đối xúng với N qua A.
Để chứng minh các phần a, b và c, ta sẽ sử dụng các tính chất của tam giác vuông và hình chữ nhật.
a. Ta có tam giác ABC vuông tại A, nên theo định lí trung tuyến, ta có DE là đường trung tuyến của tam giác ABC. Do đó, DE song song với cạnh AC. Tương tự, ta có DF song song với cạnh AB. Vậy DE//AC và DF//AB.
b. Ta cần chứng minh AEDF là hình chữ nhật. Đầu tiên, ta thấy DE//AC và DF//AB (theo phần a). Khi đó, ta có:
- AD = DC (vì D là trung điểm của BC)
- AE = EB (vì E là trung điểm của AB)
- AF = FC (vì F là trung điểm của AC)
Vậy ta có các cạnh đối diện của tứ giác AEDF bằng nhau, do đó AEDF là hình chữ nhật.
c. Gọi M là điểm đối xứng của D qua AB. Ta cần chứng minh M đối xứng với N qua A. Để làm điều này, ta sẽ chứng minh AM = AN và góc MAN = góc NAM.
- Vì M là điểm đối xứng của D qua AB, nên ta có AM = AD.
- Vì N là điểm đối xứng của D qua AC, nên ta có AN = AD.
Do đó, ta có AM = AN.
- Ta có góc MAD = góc DAB (vì M là điểm đối xứng của D qua AB)
- Ta có góc NAD = góc DAC (vì N là điểm đối xứng của D qua AC)
Vì tam giác ABC vuông tại A, nên góc DAB = góc DAC. Từ đó, ta có góc MAD = góc NAD.
Vậy ta có AM = AN và góc MAN = góc NAM, do đó M đối xứng với N qua A.
Vậy ta đã chứng minh được M đối xứng với N qua A.