Cho đường tròn tâm (O) đường kính AB=2R . C là điểm chính giữa cung AB vẽ cung AB có tâm (C;CA) . Tính diện tích hình trăng giớ hạn bởi cung AB của đường tròn (C) và cung AB ko chứa C của dường tròn (O)
Cho nửa đường tròn tâm O, đường kính AB = 2R. Vẽ tiếp tuyến Ax với nửa đường tròn (O). Gọi C điểm trên cung AB, D là điểm chính giữa cung AC, E là giao điểm của BD và Ax. Hai tia AD và BC cắt nhau tại K.
a) Chứng minh rằng BD.BE = 4R2.
b) Chứng minh tam giác BAK cân và AEKB là tứ giác nội tiếp.
c) Gọi I là giao điểm của AC và BD và P là giao điểm của KI và AB.
Chứng minh ip/ik = bp/ba.
d) Trong trường hợp EC//AB. Hãy tính BC theo R
Cho đường tròn (O;R) đường kính AB . Gọi C là điểm chính giữa của cung AB, vẽ dây CD=R. Tính góc của tâm BOD
Cho đường tròn (O;R), đường kính AB .Gọi C là điểm chính giữa của cung AB. Vẽ dây CD dài bằng R. Tính góc ở tâm BOD. Có mấy đáp số
Có hai đáp số tương ứng với hai vị trí của điểm D
*Trường hợp D nằm giữa C và B
VÌ C nằm chính giữa A và B nên :
Cho đường tròn tâm O, đường kính AB=2R, điểm C thuộc đường tròn O mà góc ABC bằng 30 độ, vẽ dây CD vuông góc với AB tại H, gọi M là điểm chính giữa của cung BC, I là giao điểm của BC và OM. a) chứng minh HCIO nội tiếp b) Gọi K là giao điểm của AM và BC. Chứng minh KC=2KB
a) Do M là điểm chính giữa của cung BC nên \(\widehat{OIC}=90^o\).
Mà \(\widehat{OHC}=90^o\) nên tứ giác HCIO nội tiếp đường tròn đường kính OC.
b) Do M là điểm chính giữa của cung BC nên hai cung MB, MC bằng nhau.
Từ đó \(\widehat{MAC}=\widehat{MAB}\) nên AM là tia phân giác của góc BAC.
Theo tính chất đường phân giác trong tam giác ta có \(\dfrac{KC}{KB}=\dfrac{AC}{AB}=sin30^o=\dfrac{1}{2}\Rightarrow KB=2KC\).
Cho đường tròn (O; R), đường kính AB. Gọi C là điểm chính giữa của cung AB. Vẽ dây CD dài bằng R. Tính góc ở tâm DOB. Có mấy đáp số ?
Cho đường tròn (O;R) có đường kính AB. Gọi C là điểm chính giữa cung AB . Vẽ dây CD có độ dài bằng R , Tính số đo góc ở tâm BOD trong các trường hợp:
a, D nằm trên cung CB
b, D nằm trên cung CA
cho đường tròn tâm o đường kính AB trên cùng 1 nửa đường tròn (O) đường kính AB lấy 2 điểm C và D sao cho cung AC nhỏ ho7n cung AD .Gọi T là giao điểm của CD và AB .Vẽ đường tròn tâm I đường kính TO cắt đường tròn tâm O tại M và N (M nằ giũa cung nhỏ CD ) nối MN cắt AB tại E . cHỨNG MINH TM là tiếp tuyến của đường tròn (O) chứng minh TM^2= TC.TD . 4 điểm o, d,c,e cùng nằm trên đường tròn
a) Vì TO là đường kính \(\Rightarrow\angle TMO=90\) mà \(M\in\left(O\right)\Rightarrow TM\) là tiếp tuyến của (O)
b) Xét \(\Delta TMC\) và \(\Delta TDM:\) Ta có: \(\left\{{}\begin{matrix}\angle MTDchung\\\angle TMC=\angle TDM\end{matrix}\right.\)
\(\Rightarrow\Delta TMD\sim\Delta TCM\left(g-g\right)\Rightarrow\dfrac{TC}{TM}=\dfrac{TM}{TD}\Rightarrow TC.TD=TM^2\)
c) Vì đường tròn đường kính TO có tâm I và đường tròn (O) cắt nhau tại M và N \(\Rightarrow\) IO là trung trực của MN \(\Rightarrow MN\bot TO\)
mà \(\Delta TMO\) vuông tại M \(\Rightarrow TM^2=TE.TO\) (hệ thức lượng)
mà \(TC.TD=TM^2\Rightarrow TC.TD=TE.TO\Rightarrow\dfrac{TC}{TE}=\dfrac{TO}{TD}\)
Xét \(\Delta TEC\) và \(\Delta TDO:\) Ta có: \(\left\{{}\begin{matrix}\angle OTDchung\\\dfrac{TC}{TE}=\dfrac{TO}{TD}\end{matrix}\right.\)
\(\Rightarrow\Delta TEC\sim\Delta TDO\left(c-g-c\right)\Rightarrow\angle TEC=\angle TDO\Rightarrow ODCE\) nội tiếp
Cho đường tròn (O; R), đường kính AB. Gọi C là điểm chính giữa của cung AB. Vẽ dây CD dài bằng R. Tính góc ở tâm DOB. Có mấy đáp số ?
Trường hợp 1: D nằm giữa A và C
=>\(\widehat{AOD}=90^0-60^0=30^0\)
=>\(\widehat{DOB}=150^0\)
Trường hợp 2: D nằm giữa B và C
ΔOCD cân tại O có CD=OC
nên ΔOCD đều
=>\(\widehat{COD}=60^0\)
hay \(\widehat{BOD}=30^0\)
Cho nửa đường tròn tâm O đường kính AB=2R. Vẽ bán kính OC vuông góc với AB. Gọi M là điểm chính giữa cung BC, E là giao điểm AM vs OC. Chứng minh
a, tứ giác MBOE nội tiếp đường tròn
b, ME=MB
c, CM là tiếp tuyến của đường tròn ngoại tiếp tứ giác MBOE
d, tính diện tích tam giác BME theo R
a: Xét (O) có
ΔMAB nội tiếp
AB là đường kính
=>ΔMAB vuông tại M
Xét tứ giác MEOB có
góc EMB+góc EOB=180 độ
=>MEOB là tứ giác nội tiếp
b: Vì M là điểm chính giữa của cung BC
nên gó MOB=góc MOC=45 độ
góc MEB=góc MOB
góc MBE=góc MOE
mà góc MOE=góc MOB
nên góc MEB=góc MBE
=>ME=MB
=>ΔMEB cân tại M