Cho nửa đường tròn tâm O, đường kính AB = 2R. Vẽ tiếp tuyến Ax với nửa đường tròn (O). Gọi C điểm trên cung AB, D là điểm chính giữa cung AC, E là giao điểm của BD và Ax. Hai tia AD và BC cắt nhau tại K.
a) Chứng minh rằng BD.BE = 4R2.
b) Chứng minh tam giác BAK cân và AEKB là tứ giác nội tiếp.
c) Gọi I là giao điểm của AC và BD và P là giao điểm của KI và AB.
Chứng minh ip/ik = bp/ba.
d) Trong trường hợp EC//AB. Hãy tính BC theo R