\(\left(2x+1\right)^2=\dfrac{36}{25}\)
Tìm x liên quan đến lũy thừa:
1, \(\left(3x-\dfrac{1}{5}\right)^2=\left(\dfrac{-3}{25}\right)^2\)
2, \(\left(2x-\dfrac{1}{3}\right)^2=\left(\dfrac{-2}{9}\right)^2\)
3, \(\left(\dfrac{1}{3}-x\right)^2=\dfrac{9}{25}\)
4, \(\left(5-x\right)^2=25\)
1: \(\left(3x-\dfrac{1}{5}\right)^2=\left(-\dfrac{3}{25}\right)^2\)
=>3x-1/5=3/25 hoặc 3x-1/5=-3/25
=>3x=8/25 hoặc 3x=2/25
=>x=8/75 hoặc x=2/75
2: \(\left(2x-\dfrac{1}{3}\right)^2=\left(-\dfrac{2}{9}\right)^2\)
=>2x-1/3=2/9 hoặc 2x-1/3=-2/9
=>2x=5/9 hoặc 2x=1/9
=>x=5/18 hoặc x=1/18
Phân tích đa thức \(18x^3-\dfrac{8}{25}x\) thành nhân tử
a. \(\dfrac{2}{25}x\left(9x^2-4\right)=\dfrac{2}{25}x\left(3x-2\right)\left(3x+2\right)\)
b. \(2x\left(9x^2-\dfrac{4}{25}\right)=2x\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)\)
Cách phân tích nào đúng, a hay b. Giải thích vì sao?
Tìm x:
a) \(\dfrac{x}{4}=\dfrac{4}{x}\)
b) \(\dfrac{x+7}{15}=-\dfrac{24}{36}\)
c) \(\dfrac{x+1}{8}=\dfrac{2}{x+1}\)
d) \(\dfrac{2x-1}{\left(-3\right)^2}=\dfrac{\left(-3\right)^2}{2x-1}\)
a, đk x khác 0
<=> x^2 = 16 <=> x = 4 ; x = -4 (tm)
b, <=> 36x +252 = -360 <=> x = -17
c. đk x khác -1
<=> (x+1)^2 = 16
TH1 : x + 1 = 4 <=> x = 3 (tm)
TH2 : x + 1 = -4 <=> x = -5 (tm)
d, đk x khác 1/2
<=> (2x-1)^2 = 81
TH1 : 2x - 1 = 9 <=> x = 5 (tm)
TH2 : 2x - 1 = -9 <=> x = -4 (tm)
a: \(\Leftrightarrow x^2=16\)
hay \(x\in\left\{4;-4\right\}\)
b: =>x+7/15=-2/3
=>x+7=-10
hay x=-17
c: \(\Leftrightarrow\left(x+1\right)^2=16\)
\(\Leftrightarrow x+1\in\left\{4;-4\right\}\)
hay \(x\in\left\{3;-5\right\}\)
a) \(\dfrac{x}{4}=\dfrac{4}{x}\)=>x2=4.4=16 =>x2=42
=>x=2 hay x=-2.
b) \(\dfrac{x+7}{15}=-\dfrac{24}{36}\)=>\(\dfrac{x+7}{15}=-\dfrac{2}{3}\)=>x+7=-\(\dfrac{2}{3}.15\)=-10 =>x=-17
c)\(\dfrac{x+1}{8}=\dfrac{2}{x+1}\)=>(x+1)2=2.8=16=42
=>x+1=4 hay x+1=-4
=>x=3 hay x=-5.
d) \(\dfrac{2x-1}{\left(-3\right)^2}=\dfrac{\left(-3\right)^2}{2x-1}\)=>\(\dfrac{2x-1}{9}=\dfrac{9}{2x-1}\)=>(2x-1)2=92
=>2x-1=9 hay 2x-1=-9
=>x=5 hay x=-4.
tìm x
\(\dfrac{3-x}{5-x}=\dfrac{6}{11}\) \(\left(1\dfrac{1}{3}-25\%.x-\dfrac{5}{12}\right)-2x=1,6:\dfrac{3}{5}\)
\(\dfrac{1}{2}.\left(x-\dfrac{2}{3}\right)-\dfrac{1}{3}.\left(2x-3\right)=x\)
\(2.\left(\dfrac{1}{2}-x\right)-3\left(x-\dfrac{1}{3}\right)=\dfrac{7}{2}\)
a: =>11(x-3)=6(x-5)
=>11x-33=6x-30
=>5x=3
=>x=3/5
b: =>(4/3-1/4x-5/12)-2x=8/5*5/3=8/3
=>-9/4x+11/12=8/3
=>-9/4x=32/12-11/12=21/12=7/4
=>x=-7/9
c: =>1/2x-1/3-2/3x-1=x
=>-1/6x-4/3=x
=>-7/6x=4/3
=>x=-4/3:7/6=-4/3*6/7=-24/21=-8/7
d: =>1-2x-3x+1=7/2
=>-5x=3/2
=>x=-3/10
Giải PT:
a) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
b) \(\sqrt{18x-9}-0,5\sqrt{2x-1}+\dfrac{1}{2}\sqrt{25\left(2x-1\right)}+\sqrt{49\left(2x-1\right)}=24\)
c) \(\sqrt{36x-72}-15\sqrt{\dfrac{x-2}{25}}=4\left(5+\sqrt{x-2}\right)\)
d) \(\sqrt{\dfrac{1}{3x+2}}-\dfrac{1}{2}\sqrt{\dfrac{9}{3x+2}}+\sqrt{\dfrac{16}{3x+2}}-5\sqrt{\dfrac{1}{12x+8}}=1\)
e) \(\dfrac{1}{2}\sqrt{\dfrac{49x}{x+2}}-3\sqrt{\dfrac{x}{4x+8}}-\sqrt{\dfrac{x}{x+2}}-\sqrt{5}=0\)
a. ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{3}{2}.\sqrt{9}.\sqrt{x-1}+24.\sqrt{\frac{1}{64}}.\sqrt{x-1}=-17$
$\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17$
$\Leftrightarrow -\sqrt{x-1}=-17$
$\Leftrightarrow \sqrt{x-1}=17$
$\Leftrightarrow x-1=289$
$\Leftrightarrow x=290$
b. ĐKXĐ: $x\geq \frac{1}{2}$
PT $\Leftrightarrow \sqrt{9}.\sqrt{2x-1}-0,5\sqrt{2x-1}+\frac{1}{2}.\sqrt{25}.\sqrt{2x-1}+\sqrt{49}.\sqrt{2x-1}=24$
$\Leftrightarrow 3\sqrt{2x-1}-0,5\sqrt{2x-1}+2,5\sqrt{2x-1}+7\sqrt{2x-1}=24$
$\Leftrightarrow 12\sqrt{2x-1}=24$
$\Leftrihgtarrow \sqrt{2x-1}=2$
$\Leftrightarrow x=2,5$ (tm)
c. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{36}.\sqrt{x-2}-15\sqrt{\frac{1}{25}}\sqrt{x-2}=4(5+\sqrt{x-2})$
$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)
Vậy pt vô nghiệm
d. ĐKXĐ: $x>\frac{-2}{3}$
PT $\Leftrightarrow \sqrt{\frac{1}{3x+2}}-\frac{1}{2}\sqrt{9}.\sqrt{\frac{1}{3x+2}}+\sqrt{16}.\sqrt{\frac{1}{3x+2}}-5\sqrt{\frac{1}{4}}\sqrt{\frac{1}{3x+2}}=1$
$\Leftrightarrow \sqrt{\frac{1}{3x+2}}-\frac{3}{2}\sqrt{\frac{1}{3x+2}}+4\sqrt{\frac{1}{3x+2}}-\frac{5}{2}\sqrt{\frac{1}{3x+2}}=1$
$\Leftrightarrow \sqrt{\frac{1}{3x+2}}=1$
$\Leftrightarrow \frac{1}{3x+2}=1$
$\Leftrightarrow 3x+2=1$
$\Leftrightarrow x=-\frac{1}{3}$
\(\left(\dfrac{1}{16}-1\right)\left(\dfrac{1}{25}-1\right)\left(\dfrac{1}{36}-1\right)...\left(\dfrac{1}{10000}-1\right)\)
BT1: Khai triển
\(d,\left(x+2\right)\left(x^2-2x+4\right)\)
\(e,\left(\dfrac{1}{4}-\dfrac{x}{5}\right)\left(\dfrac{x^2}{25}+\dfrac{x}{20}+\dfrac{1}{16}\right)\)
d) \(\left(x+2\right)\left(x^2-2x+4\right)\)
\(=\left(x+2\right)\left(x^2-2\cdot x+2^2\right)\)
\(=x^3+2^3\)
\(=x^3+8\)
e) \(\left(\dfrac{1}{4}-\dfrac{x}{5}\right)\left(\dfrac{x^2}{25}+\dfrac{x}{20}+\dfrac{1}{16}\right)\)
\(=\left(\dfrac{1}{4}-\dfrac{1}{5}x\right)\left(\dfrac{1}{25}x^2+\dfrac{1}{5}x\cdot\dfrac{1}{4}+\dfrac{1}{16}\right)\)
\(=\left(\dfrac{1}{4}-\dfrac{1}{5}x\right)\left[\left(\dfrac{1}{5}x\right)^2+\dfrac{1}{5}x\cdot\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2\right]\)
\(=\left(\dfrac{1}{4}\right)^3-\left(\dfrac{1}{5}x\right)^3\)
\(=\dfrac{1}{64}-\dfrac{1}{125}x^3\)
\(=\dfrac{1}{64}-\dfrac{x^3}{125}\)
d: (x+2)(x^2-2x+4)
=(x+2)(x^2-x*2+2^2)
=x^3+8
e: (1/4-x/5)(1/16+x/20+x^2/25)
=(1/4-x/5)[(1/4)^2+1/4*x/5+(x/5)^2]
=1/64-x^3/125
Các chế ơi, còn 10 câu nữa thui, sắp hết rùi.
FIGHTING!
JIAYOU!
HWAITING!
GAMBATTEYO!
Giải các phương trình sau
16) \(3\left(x+5\right)\left(x+6\right)\left(x+7\right)=8x\)
17) \(\left(x+6\right)^4+\left(x+4\right)^4=82\)
18) \(\left(x^2+6x+10\right)^2+\left(x+3\right)\left(3x^2+20x+36\right)=0\)
19) \(2\left(x^2+x+1\right)^2-7\left(x-1\right)^2=13\left(x^3-1\right)\)
20) \(\left(x+2008\right)^4+\left(x+2009\right)^4=\dfrac{1}{8}\)
21) \(x^4+18x=13x^2+5\)
22) \(\dfrac{1}{5x^2}+\dfrac{1}{x^2-9x+36}=\dfrac{1}{x^2-4x+16}\)
23) \(\dfrac{\left(x+1\right)^2}{x^2+2x+2}-\dfrac{x^2+2x}{\left(x+1\right)^2}=\dfrac{1}{90}\)
24) \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)
25)\(\dfrac{x-4}{x+1}+\dfrac{x-4}{x+1}+\dfrac{8}{3}=\dfrac{x-8}{x+2}+\dfrac{x+8}{x-2}\)
Thanks các cậu vì đã giúp mk
Bài 17)
(x - 2)^4 + (x - 6)^4 = 82
Đặt t = x + 3
=> x + 2 = t - 1; x + 4 = t + 1.
ta có pt: (t - 1)^4 + (t + 1)^4 = 82
<=>[(t -1)²]² + [(t + 1)²]² = 82
<=> (t² - 2t + 1)² + (t² + 2t + 1)² = 82
<=> (t²+1)² - 4t(t²+1) + 4t² + (t²+1)² + 4t(t²+1) + 4t² = 82
<=> (t² + 1)² + 4t² = 41
<=> t^4 + 6t² + 1 = 41
<=> (t²)² + 6t² - 40 = 0
<=> t² = -10 (loại) hoặc t² = 4
<=> t = 2 hoặc t = -2
với t = -2 => x = -5
với t = 2 => x = -1
vậy pt có hai nghiệm là : x = -1 hoặc x = -5
Bài 18: Phương trình đã cho được viết thành: $${({x^2} + 6x + 10)^2} + (x + 3)\left[ {3\left( {{x^2} + 6x + 10} \right) + 2\left( {x + 3} \right)} \right] = 0$$
Đặt $u = {x^2} + 6x + 10 > 0,v = x + 3$, suy ra:
$${u^2} + v\left( {3u + 2v} \right) = 0 \Leftrightarrow \left( {u + v} \right)\left( {u + 2v} \right) = 0 \Leftrightarrow \left[ \begin{gathered}
u + v = 0 \\
u + 2v = 0 \\
\end{gathered} \right.$$
$$ \Leftrightarrow \left[ \begin{gathered}
{x^2} + 6x + 10 + x + 3 = 0 \\
{x^2} + 6x + 10 + 2\left( {x + 3} \right) = 0 \\
\end{gathered} \right. \Leftrightarrow \left[ \begin{gathered}
{x^2} + 7x + 13 = 0 \\
{x^2} + 8x + 16 = 0 \\
\end{gathered} \right. \Leftrightarrow x = - 4$$
Bài 19:
(x² + x + 1) - 7(x - 1)² = 13(x³ - 1)
⇔ 2x² + 2x + 2 - 7(x² - 2x + 1) = 13x - 13
⇔ 2x² + 2x + 2 - 7x² + 14x - 7 = 13x³ - 13
⇔ 13x³ + 5x² - 16x - 8 = 0
⇔ 13x³ + 13x² - 8x² - 8x - 8x - 8 = 0
⇔ 13x²(x + 1) - 8x(x + 1) - 8(x + 1) = 0
⇔ (x + 1)(13x² - 8x - 8) = 0
⇔ \(\left[{}\begin{matrix}x+1=0\\13x^2-8x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{4\pm2\sqrt{30}}{13}\end{matrix}\right.\)
thực hiện phép tính (tính hợp lí nếu có thể)
1) \(-0,75.\dfrac{12}{-5}.4\dfrac{1}{6}.\left(-1\right)^2\)
2) \(\dfrac{11}{25}.\left(-24,8\right)-\dfrac{11}{25}.75,2\)
3) \(\left(-\dfrac{3}{4}+\dfrac{2}{7}\right):\dfrac{2}{3}+\left(-\dfrac{1}{4}+\dfrac{5}{7}\right):\dfrac{2}{3}\)
4) \(\left(\dfrac{1}{2}-\dfrac{2}{3}\right)-\left(\dfrac{5}{3}-\dfrac{3}{2}\right)+\left(\dfrac{7}{3}-\dfrac{5}{2}\right)\)
5) \(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}\)
6) \(\left(-\dfrac{1}{3}\right)^2.\dfrac{4}{11}+\dfrac{7}{11}.\left(-\dfrac{1}{3}\right)^2\)
5) \(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}\)
=\(4+6-3+5\)
=\(12\)
2) \(\dfrac{11}{25}.\left(-24,8\right)-\dfrac{11}{25}.75,2\)
=\(\dfrac{11}{25}.\left(-24,8-75,2\right)\)
=\(\dfrac{11}{25}.\left(-100\right)\)
=\(-44\)
\(6\)) \(\left(-\dfrac{1}{3}\right)^2\).\(\dfrac{4}{11}+\dfrac{7}{11}.\left(-\dfrac{1}{3}\right)^2\)
=\(\left(-\dfrac{1}{3}\right)^2.\left(\dfrac{4}{11}+\dfrac{7}{11}\right)\)
=\(\left(-\dfrac{1}{3}\right)^2.1\)
=\(\dfrac{1}{9}\)