Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thái Dương Lê Văn
Xem chi tiết
Thần Đồng Đất Việt
19 tháng 3 2016 lúc 21:37

mk đưa lun kết quả : k = 2..check mk nhá

Nguyễn Tuấn
19 tháng 3 2016 lúc 20:26

pt<=> x^4+y^2+x^2*y^2+x^2-4x^2y=0

=>(x^4-2x^2y+y^2)+x^2(1-2y+y^2)=0

Haley
Xem chi tiết
Haley
Xem chi tiết
pham trung thanh
13 tháng 2 2018 lúc 21:20

MÌnh nghĩ thế này ko bt đúng ko

Ta có: \(\hept{\begin{cases}x^2+1\ge2x\\x^2+y^2\ge2xy\end{cases}}\)

\(\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)\ge4x^2y\)

\(\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)-4x^2y\ge0\)

Dấu = xảy ra khi x=y=1

Vậy (x;y)=(1;1)

vũ tiền châu
13 tháng 2 2018 lúc 21:19

Ta có pt \(\Leftrightarrow\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)

Áp dụng BĐt cô-si , ta có 

\(x^2+1\ge2\sqrt{x^2}=2x;x^2+y^2\ge2xy\)

Nhân vào, ta có \(\left(x^2+1\right)\left(y^2+x^2\right)\ge4x^2y\)

Dấu = xảy ra <=> x=y=1 

^_^ 

Haley
21 tháng 2 2018 lúc 20:04

dấu = xảy ra khi x=-1; y = 1 được kh nhỉ?

chikaino channel
Xem chi tiết
๖²⁴ʱんuリ イú❄✎﹏
31 tháng 12 2019 lúc 15:17

Xét điểm M(a;b) bất kì nằm trog ( tính cả biên ) của hình tròn ( \(C_n\)) : \(x^2+y^2\le n^2\)

Mỗi điểm M như vậy tương ứng với 1 và chỉ 1 hình vuông đơn vị S(M) mà M là đỉnh ở goc trái , phía dưới 

Từ đó suy ra \(S_n\)= số hình vuông S (M) = tổng diện tích của S(M) với \(M\in\left(C_n\right)\)

Rõ ràng các hình vuông S(M) , với \(M\in\left(C_{ }_n\right)\)đều nằm trog hình tròn \(\left(C_{n+\sqrt{2}}\right):x^2+y^2\le\left(n+\sqrt{2}\right)^2\)

Do đó : \(S_n\le\pi\left(n+\sqrt{2}\right)^2\)(1) 

Tương tự như vậy , ta thấy các hình vuông S(M) , với \(M\in\left(C_n\right)\)phủ kín hình tròn

\(\left(C_{n-\sqrt{2}}\right):x^2+y^2\le\left(n-\sqrt{2}\right)^2\)vì thế \(S_n\ge\pi\left(n-\sqrt{2}\right)^2\)(2)

Từ (1) và (2) suy ra \(\sqrt{\pi}\left(n-\sqrt{2}\right)\le\sqrt{S_n}\le\sqrt{\pi}\left(n+\sqrt{2}\right)\)

suy ra \(\sqrt{\pi}\left(1-\frac{\sqrt{2}}{n}\right)\le\frac{\sqrt{S_n}}{n}\le\sqrt{\pi}\left(1+\frac{\sqrt{2}}{n}\right)\)

Mà lim \(\sqrt{\pi}\left(1-\frac{\sqrt{2}}{n}\right)\)= lim\(\sqrt{\pi}\left(1+\frac{\sqrt{2}}{n}\right)=\sqrt{\pi}\)nên lim \(\sqrt{\frac{S_n}{n}}=\sqrt{\pi}\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
31 tháng 12 2019 lúc 21:30

@ Huy @ Bài làm đánh đẹp lắm. Nhưng cô cũng không hiểu được rõ  ràng là toán 6 sao có lim, phương trình đường tròn;...                      ( lớp 11 , 12 ) ở đây.

 Lần sau chú ý giải Toán 6 không cần dùng kiến thức quá cao nhé.

Tuy nhiên đề bài bạn thiếu. Lần sau em có thể sửa lại đề bài trước rồi hẵng làm nha.

Khách vãng lai đã xóa
Phương Nguyễn 2k7
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 21:09

Câu 10: B

Câu 9: C

Câu 8: A

Câu 7: A

Câu 6: C

Câu 5:D

Câu 4: A

Câu 3: B

Câu 2: A

Câu 1; B

AllesKlar
Xem chi tiết
Đức Anh Lê
Xem chi tiết
Trần Anh Khoa
1 tháng 2 lúc 18:56

\(x^2+5y^2+2y+4xy-3=0\)
\(\Leftrightarrow\)\((x^2+4xy+4y^2)+(y^2+2y+1)=4\)
\(\Leftrightarrow\)\((x+2y)^2+(y+1)^2=4\)
\(\Leftrightarrow\)\((x+2y)^2=4-(y+1)^2\)
\(\Leftrightarrow\)\((x+2y)^2=(2-y-1)(2+y+1)\)
\(\Leftrightarrow\)\((x+2y)^2=(1-y)(3+y)\)
\(Vì \) \((x+2y)^2\geq0\)
\(\Rightarrow\)\((1-y)(3+y)\geq0\)
\(\Rightarrow\)\(\left[\begin{array}{} \begin{cases} 1-y\geq0\\ 3+y\geq0 \end{cases}\\ \begin{cases} 1-y\leq0\\ 3+y\leq0 \end{cases} \end{array} \right.\)
\(\Rightarrow\)\(\left[\begin{array}{} \begin{cases} y\leq1\\ y\geq-3 \end{cases}\\ \begin{cases} y\geq1\text{(Vô lí)}\\ y\leq-3\text{(Vô lí)} \end{cases} \end{array} \right.\)
\(\Rightarrow\)\(-3\leq y\leq1\)
\(\text{Mà y là số nhỏ nhất}\)
\(\Rightarrow\)\(y=-3\)
\(\Rightarrow\)\(x+2.(-3)=0\text{ (Vì }(x+2y)^2\geq0)\)
\(\Rightarrow\)\(x=6\)
\(\text{Vậy cặp số (x,y) thỏa mãn yêu cầu bài toán là: (6;-3)}\)
Nếu mình đúng cho mình xin 1 like nha

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 10 2017 lúc 5:03

Theo giả thiết và công thức tích phân từng phần, ta có:

Vậy 

Chọn đáp án A.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 10 2019 lúc 13:38

Đáp án B

Theo giả thiết có  

Và thay vào đẳng thức điều kiện có:

Đối chiếu với điều kiện nhận