Cho hai số thực dương x, y thỏa mãn \(2^x+2^y=4\). Tìm giá trị lớn nhất Pmax của biểu thức \(P=\left(2x^2+y\right)\left(2y^2+x\right)+9xy\)
cho các số thực x,y thỏa mãn \(\left\{{}\begin{matrix}\max\limits\left\{5;9x+7y-20\right\}\le x^2+y^2\le2x+8\\y\le1\end{matrix}\right.\). gọi M, m lần lượt là giá trị lớn nhất và gtnn của biểu thức P = x-2y. tính M - m
có bao nhiêu số nguyên y sao cho tồn tại \(x\in\left(\dfrac{1}{3};5\right)\) thỏa mãn \(27^{3x^2+xy}=\left(1+xy\right)27^{15x}\) ?
Cho số thực dương \(x,\left(x\ne1,x\ne\dfrac{1}{2}\right)\) thỏa mãn \(log_x\left(16x\right)=log_{2x}\left(8x\right)\). Giá trị \(log_x\left(16x\right)\) bằng \(log\dfrac{m}{n}\) với \(m\) và \(n\) là các số nguyên dương và phân số \(\dfrac{m}{n}\) tối giản. Tổng \(m+n\) bằng?
Giải thích cho mình dòng bôi vàng ở dưới, mình cảm ơn nhiều ♥
Cho hàm số \(f\left(x\right)=e^{\sqrt{x^2+1}}\left(e^x-e^{-x}\right)\). Có bao nhiêu số nguyên dương m thỏa mãn bất phương trình \(f\left(m-7\right)+f\left(\dfrac{12}{m+1}\right)< 0\) ?
Có bao nhiêu số nguyên \(m\ge2\) sao cho tồn tại số thực \(x\) thỏa mãn \(\left(m^{lnx}+4\right)^{lnm}+4=x\)?
A. 8.
B. 9.
C. 1.
D. Vô số.
Tìm tất cả các hàm số liên tục \(f:R\rightarrow R\) thỏa mãn: \(f\left(4xy\right)=f\left(2x^2+2y^2\right)+4\left(x-y\right)^2,\forall x,y\in R\)
Chứng minh hàm số sau đây thỏa mãn hệ thức :
Nếu \(y=\frac{1+\ln x}{x\left(1-\ln x\right)}\) thì \(y'=\frac{2xy}{x^2+1}+e^x\left(x^2+1\right)\)
Cho phương trình: \(\left(x^2-1\right).log^2\left(x^2+1\right)-m\sqrt{2\left(x^2-1\right)}.log\left(x^2+1\right)+m+4=0\). Có bao nhiêu giá trị nguyên của tham số m thuộc [-10;10] để phương trình đã cho có 2 nghiệm phân biệt thỏa mãn \(1\le|x|\le3\)