cho pt x^2-(2m+1)x+2m-3=0 luôn có nghiệm phân biệt
cho \(x^2-2\left(m-1\right)x-2m=0\) (m tham số). CMR: PT luôn có 2 nghiệm phân biệt với mọi m. Gọi `x_1 ;x_2` là 2 nghiệm của PT, tìm tất cả giá trị m để \(x_1^2+x_1-x_2=5-2m\)
\(x^2-2\left(m-1\right)x-2m=0\)
\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)
\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
Cho PT: x^2-2(m+1)x+2m-2=0 (x là ẩn số)a) CMR: PT luôn có 2 nghiệm phân biệt với mọi mb) Gọi 2 nghiệm của PT là x1, x2. Tính theo m giá trị của biểu thức:E=x1^2+2(m+1)x2+2m-2
Giúp mk câu b nha
Lời giải:
a) $\Delta=(m+1)^2-(2m-2)=m^2+3>0$ với mọi $m\in\mathbb{R}$ nên PT luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$
b) Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m-2\end{matrix}\right.\)
Khi đó:
\(E=x_1^2+2(m+1)x_2+2m-2=x_1^2+(x_1+x_2)x_2+x_1x_2=x_1^2+x_2^2+2x_1x_2=(x_1+x_2)^2=4(m+1)^2\)
cho pt x²-(2m-1)x+m-1=0 . a Chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi giá trị của m . b Tìm m để pt có 2 nghiệm trái dấu . c Tìm m để pt có 2 nghiệm cùng dấu
a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)
\(=4m^2-4m+1-4m+4=4m^2-8m+5\)
\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)
=>Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì m-1<0
hay m<1
Cho pt: \(x^2-2\left(m+1\right)x+2m=0\). Pt này luôn có 2 nghiệm phân biệt \(x_1;x_2\) \(\forall m\). Tìm m để 2 nghiệm \(x_1;x_2\) thỏa mãn:
\(x_1^2=9x_2+10\) (với \(x_1\)≥ 4)
\(\Delta'=m^2+1\Rightarrow\left\{{}\begin{matrix}x_1=m+1+\sqrt{m^2+1}\\x_2=m+1-\sqrt{m^2+1}\end{matrix}\right.\)
(Do \(m+1-\sqrt{m^2+1}< \sqrt{m^2+1}+1-\sqrt{m^2+1}< 4\) nên nó ko thể là nghiệm \(x_1\))
Từ điều kiện \(x_1\ge4\Rightarrow m+1+\sqrt{m^2+1}\ge4\Rightarrow\sqrt{m^2+1}\ge3-m\)
\(\Rightarrow\left[{}\begin{matrix}m\ge3\\\left\{{}\begin{matrix}m< 3\\m^2+1\ge m^2-6m+9\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge\dfrac{4}{3}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{matrix}\right.\)
\(x_1^2=9x_2+10\Leftrightarrow x_1\left(x_1+x_2\right)-x_1x_2=9x_2+10\)
\(\Leftrightarrow2\left(m+1\right)x_1-2m=9x_2+10\)
\(\Leftrightarrow2\left(m+1\right)x_1-2m=9\left(2\left(m+1\right)-x_1\right)+10\)
\(\Leftrightarrow\left(2m+11\right)x_1=20m+28\Rightarrow x_1=\dfrac{20m+28}{2m+11}\)
\(\Rightarrow x_2=2\left(m+1\right)-x_1=\dfrac{4m^2+6m-6}{2m+11}\)
Thế vào \(x_1x_2=2m\)
\(\Rightarrow\left(\dfrac{20m+28}{2m+11}\right)\left(\dfrac{4m^2+6m-6}{2m+11}\right)=2m\)
\(\Leftrightarrow\left(3m-4\right)\left(12m^2+40m+21\right)=0\)
\(\Leftrightarrow m=\dfrac{4}{3}\) (do \(12m^2+40m+21>0;\forall m\ge\dfrac{4}{3}\))
Cho pt: \(x^2-2\left(m+1\right)x+2m=0\). pt trình này luôn có 2 nghiệm phân biệt \(x_1;x_2\) với ∀m. Khi đó tìm m để 2 nghiệm \(x_1;x_2\) thỏa mãn: \(x_1^2=9x_2+10\) (với \(x_1\)≥ 4)
Cái này phân tích đề ra là lm được bạn nhé
1, \(x^2-8x+2m+6=0\)
Tìm m để pt có 2 nghiệm.
2, \(x^2-2\left(m-1\right)x+2m-6=0\)
tìm m để pt có 2 nghiệm phân biệt
\(1,\Leftrightarrow\Delta=64-4\left(2m+6\right)\ge0\\ \Leftrightarrow40-8m\ge0\\ \Leftrightarrow m\le5\\ 2,\Leftrightarrow\Delta=4\left(m-1\right)^2-4\left(2m-6\right)>0\\ \Leftrightarrow4m^2-8m+4-8m+24>0\\ \Leftrightarrow2\left(m^2-4m+4\right)+6>0\\ \Leftrightarrow2\left(m-2\right)^2+6>0\left(\text{luôn đúng}\right)\\ \Leftrightarrow m\in R\)
Cho pt: x2 - (2m+1)x+m=0 (m là tham số)
a) CMR: pt luôn có 2 nghiệm phân biệt với mọi m.
b) Tìm m để A= x12 - x1 + 2mx2+x1x2 đạt GTNN.
a/ \(x^2-\left(2m+1\right)x+m=0\)
\(\Delta=[-\left(2m+1\right)]^2-4m=4m^2+4m+1-4m=4m^2+1\)
vi 1>0
4m2≥0(với mọi m)
Nên 4m2+1>0(với mọi m)
Vậy pt luôn có 2 nghiệm phân biệt với mọi m
b)Theo định lí viet \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt
\(\Rightarrow x_1^2-\left(2m+1\right)x_1+m=0\) \(\Leftrightarrow x_1^2-x_1=2mx_1-m\)
\(A=x_1^2-x_1+2mx_2+x_1x_2\)
\(=2mx_1-m+2mx_2+x_1x_2\)\(=2m\left(x_1+x_2\right)-m+x_1x_2\)\(=2m\left(2m+1\right)-m+m\)\(=4\left(m+\dfrac{1}{4}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\forall m\)
Dấu = xra khi \(m=-\dfrac{1}{4}\)
Vậy minA=\(-\dfrac{1}{4}\)khi \(m=-\dfrac{1}{4}\)
\(x^2-\left(2m+1\right)x+2m=0\)
tìm m để pt có 2 nghiệm phân biệt trong đó có một nghiệm < 1
\(x^2-2mx-x+2m=0\)
\(\Leftrightarrow x\left(x-1\right)-2m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2m\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2m\end{matrix}\right.\)
Để pt có 2 nghiệm pb trong đó có 1 nghiệm nhỏ hơn 1
\(\Rightarrow2m< 1\Rightarrow m< \dfrac{1}{2}\)
Ta có \(\Delta =(2m-3)^2-4(m^2-3m)=4m^2-12m+9-4m^2+12m=9>0\forall m\) .
Do đó pt luôn có 2 nghiệm phân biệt.