giải pt: \(x^4-9x^2-24x-16=0\)
Giải phương trình:
a) x4 - 10x3 + 25x2 - 36 = 0
b) x4 - 9x2 - 24x - 16 = 0
a. \(x^4-10x^3+25x^2-36=0\)
=> \(x^3\left(x-3\right)-7x^2\left(x-3\right)+4x\left(x-3\right)+12\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(x^3-7x^2+4x+12\right)=0\)
=>\(\left(x-3\right)\left[x^2\left(x-2\right)-5x\left(x-2\right)-6\left(x-2\right)\right]=0\)=> \(\left(x-3\right)\left(x-2\right)\left(x^2-5x-6\right)=0\)
=> \(\left(x-3\right)\left(x-2\right)\left(x+1\right)\left(x-6\right)=0\)
=>\(\left[\begin{matrix}x=3\\x=2\\x=-1\\x=6\end{matrix}\right.\)
b) \(x^4\) - \(^{9x^2}\) - 24x - 16 = 0
=> \(x^3\left(x-4\right)+4x^2\left(x-4\right)+7x\left(x-4\right)+4\left(x-4\right)=0\)=>\(\left(x-4\right)\left(x^3+4x^2+7x+4\right)=0\)
=> \(\left(x-4\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)+4\left(x+1\right)\right]=0\)=>\(\left(x-4\right)\left(x+1\right)\left(x^2+3x+4\right)=0\)
=> \(\left(x-4\right)\left(x+1\right)=0\) (vì x^2 + 3x + 4> 0)
=>\(\left[\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
a,pt\(\Leftrightarrow\left(x^4-10x^3+25x\right)-36=0\)\(\Leftrightarrow\left(x^2-5x\right)^2-36=0\)
\(\Leftrightarrow\left(x^2-5x-6\right)\left(x^2-5x+6\right)=0\)\(\Leftrightarrow\left[\begin{matrix}x^2-5x-6=0\\x^2-5x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}\left(x+1\right)\left(x-6\right)=0\\\left(x-2\right)\left(x-3\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-1,x=6\\x=2,x=3\end{matrix}\right.\)
vậy pt có 4 nghiệm x=(-1,6,2,3)
pt\(\Leftrightarrow x^4-\left(9x^2+24x+16\right)=0\)\(\Leftrightarrow\left(x^2\right)^2-\left(3x+4\right)^2=0\)\(\Leftrightarrow\left(x^2-3x-4\right)\left(x^2+3x+4\right)=0\)\(\Leftrightarrow\left[\begin{matrix}x^2-3x-4=0\\x^2+3X+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix}\left(x-4\right)\left(x+1\right)=0\\x^2+3x+4>0\end{matrix}\right.\)\(\Leftrightarrow x=4,x=-1\)
vậy pt có nghiệm x=(4,-1)
Số nghiệm thực của phương trình \(x^4-9x^2+24x-16=0\)
\(\Leftrightarrow x^4-x^3+x^3-x^2-8x^2+8x+16x-16=0\\ \Leftrightarrow\left(x-1\right)\left(x^3+x^2-8x+16\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^3+4x^2-3x^2-12x+4x+16\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+4\right)\left(x^2-3x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\\\left(x-\dfrac{3}{2}\right)^2+\dfrac{7}{4}=0\left(vô.n_o\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Giải các phương trình:
a) $x^4-9x^2+24x-16 = 0;$
b) $x^4 = 6x^2+12x+8;$
c) $x^4 = 4x+1;$
d) $x^3-x^2-x=\dfrac 13$.
\(x^4-9x^2+24x-16=\)\(0\)
\(\Leftrightarrow x^4-\left(9x^2-24x+16\right)=0\)
\(\Leftrightarrow x^4-\left(3x-4\right)^2=0\)
\(\Leftrightarrow\left(x^2+3x-4\right)\left(x^2-3x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]=0\)
Vì \(\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)nên:
\(\left(x+4\right)\left(x-1\right)=0:\left[\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\right]\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{1;-4\right\}\)
\(x^4=6x^2+12x+\)\(8\)
\(\Leftrightarrow x^4-2x^2+1=4x^2+12x+9\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow|x^2-1|=|2x+3|\)\(|\)
xét các trường hợp:
- Trường hợp 1:
\(x^2-1=2x+3\)
\(\Leftrightarrow x^2-1-2x-3=0\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2-5=0\Leftrightarrow\left(x-1\right)^2=5\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\sqrt{5}\\x-1=-\sqrt{5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}}\)
-Trường hợp 2:
\(x^2-1=-2x-3\)
\(\Leftrightarrow x^2-1+2x+3=0\)
\(\Leftrightarrow x^2+2x+2=0\)
\(\Leftrightarrow\left(x+1\right)^2+1=0\)
\(\Leftrightarrow\left(x+1\right)^2=-1\left(vn\right)\)(vô nghiệm)
Vậy phương trình có tập nghiệm: \(S=\left\{1\pm\sqrt{5}\right\}\)
\(x^4=4x+1\)
\(\Leftrightarrow x^4+2x^2+1=2x^2+4x+2\)
\(\Leftrightarrow\left(x^2+1\right)^2=2\left(x+1\right)^2\)
\(\Leftrightarrow|x^2+1|=|x\sqrt{2}+\sqrt{2}|\)
Xét các trường hợp sau:
-Trường hợp 1:
\(x^2+1=x\sqrt{2}+\sqrt{2}\)
\(\Leftrightarrow x^2+1-x\sqrt{2}-\sqrt{2}=0\)
\(\Leftrightarrow\left(x^2-2x.\frac{\sqrt{2}}{2}+\frac{1}{2}\right)-\frac{2\sqrt{2}-1}{2}=0\)
\(\Leftrightarrow\left(x-\frac{1}{\sqrt{2}}\right)^2=\frac{2\sqrt{2}-1}{2}\)
Vì \(\frac{2\sqrt{2}-1}{2}>0\)nên:
\(\left|x-\frac{1}{\sqrt{2}}\right|=\left|\sqrt{\frac{2\sqrt{2}-1}{2}}\right|\)
Lại xét các trường hợp:
+Trường hợp 1.1:
\(x-\frac{1}{\sqrt{2}}=\frac{\sqrt{2\sqrt{2}-1}}{\sqrt{2}}\)\(\Leftrightarrow x=\frac{\sqrt{2\sqrt{2}-1}+1}{\sqrt{2}}\)
+Trường hợp 1.2:
\(x-\frac{1}{\sqrt{2}}=\frac{\sqrt{2\sqrt{2}-1}}{\sqrt{2}}\Leftrightarrow x=\frac{1-\sqrt{2\sqrt{2}-1}}{\sqrt{2}}\)
-Trường hợp 2:
\(x^2+1=-x\sqrt{2}-\sqrt{2}\)(2)
\(\Leftrightarrow x^2+1+x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow\left(x^2+2x.\frac{\sqrt{2}}{2}+\frac{1}{2}\right)+\frac{1+2\sqrt{2}}{2}=0\)
\(\Leftrightarrow\left(x+\frac{1}{\sqrt{2}}\right)^2=\frac{-1-2\sqrt{2}}{2}\)(vô nghiệm)
Do đó phương trình (2) vô nghiệm.
Vậy phương trình có tập nghiệm : \(S=\left\{\frac{1\pm\sqrt{2\sqrt{2}-1}}{\sqrt{2}}\right\}\)
Giải các pt sau: a,(x2+5x+6)(x2+9x+20)=24
b,x4-24x=32
(x2 + 5x + 6)(x2 + 9x + 20) = 24
<=> (x + 2)(x + 3)(x + 4)(x + 5) - 24 = 0
<=> (x2 + 7x + 10)(x2 + 7x + 12) - 24 = 0 (1)
Đặt x2 + 7x + 11 = t, ta có:
(1) <=> (t - 1)(t + 1) - 24 = 0
<=> t2 - 1 - 24 = 0
<=> (t - 5)(t + 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}t-5=0\\t+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+7x+11-5=0\\x^2+7x+11+5=0\end{matrix}\right.\)
<=> (x + 1)(x + 6) = 0 (vì \(x^2+7x+16\ge\dfrac{15}{4}>0\))
<=> x = - 1 hoặc x = - 6
~ ~ ~ ~ ~
x4 - 24x = 32
<=> x4 - 24x - 32 = 0
<=> (x2 - 2x - 4)(x2 + 2x + 8) = 0
<=> \(\left(x-1-\sqrt{5}\right)\left(x-1+\sqrt{5}\right)=0\) (vì \(x^2+2x+8\ge7>0\))
\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{matrix}\right.\)
giải phương trình x^4-9x^3+24x^2-27x+9=0
\(x^4-9x^3+24x^2-27x+9=0\)
<=> \(x^4-3x^3+3x^2-6x^3+18x^2-18x+3x^2-9x+9=0\)
<=>\(x^2\left(x^2-3x+3\right)-6x\left(x^2-3x+3\right)+3\left(x^2-3x+3\right)=0\)
<=>\(\left(x^2-6x+3\right)\left(x^2-3x+3\right)=0\)
<=> \(\left[{}\begin{matrix}x^2-6x+3=0\\x^2-3x+3=0\end{matrix}\right.\)
Giải nốt :))
giải phương trình \(x^4-9x^3+24x^2-27x+9=0\)
nhận thấy x = 0 không là nghiệm của phương trình
Chia 2 vế phương trình cho x2, ta được :
\(x^2-9x+24-\frac{27}{x}+\frac{9}{x^2}=0\) ( 1 )
đặt \(t=x+\frac{3}{x}\)
( 1 ) \(\Leftrightarrow\left(x+\frac{3}{x}\right)^2-9\left(x+\frac{3}{x}\right)+18=0\)
\(\Leftrightarrow t^2-9t+18=0\Leftrightarrow\left(t-6\right)\left(t-3\right)=0\Leftrightarrow\orbr{\begin{cases}t=6\\t=3\end{cases}}\)
Khi đó : \(\orbr{\begin{cases}x+\frac{3}{x}=6\Leftrightarrow x=3\pm\sqrt{6}\\x+\frac{3}{x}=3\Leftrightarrow x\in\varnothing\end{cases}}\)
giải nhữg pt sau:
a) 4x^3 - 13x^2 +9x - 18 = 0
b) x^3 - 9x^2 +6x +16 = 0
c) x^3 - 4x^2 - 8x + 8 = 0
a) <=> 4x^3 - 12x^2 - x^2 + 3x + 6x - 18 = 0
<=> 4x^2 (x - 3) - x(x - 3) + 6(x - 3) = 0
<=> (x - 3)(4x^2 - x + 6) = 0
xét 2 th
. x - 3 = 0 <=> x = 3
. 4x^2 - x + 6 = 0
<=> 4x^2 + 2.(1/2)x + 1/4 + 23/4 = 0
<=> (4x + 1/2)^2 = -23/4
.... phần sau bạn tự làm nhé
vậy pt trên có nghiệm là ...
. mik bận nên chỉ làm như vậy thôi.. những ý sau thì tách tương tự
c) => x3 + 2x2 - 6x2 - 12x + 4x + 8 = 0
=> (x3 + 2x2) - (6x2 + 12x) + (4x + 8) = 0
=> x2. (x +2) - 6x. (x + 2) + 4.(x + 2) =0
=> (x +2).(x2 - 6x + 4) = 0
=> x+ 2 = 0 hoặc x2 - 6x + 4 = 0
+) x+ 2 =0 => x = -2
+) x2 - 6x + 4 = 0 => x2 - 2.x.3 + 9 - 5 = 0 => (x -3)2 = 5
=> x - 3 = \(\sqrt{5}\) hoặc x - 3 = - \(\sqrt{5}\)
=> x = 3 + \(\sqrt{5}\) hoặc x = 3 - \(\sqrt{5}\)
vậy...
giải pt
a.\(2\sqrt{x-4}-\dfrac{1}{3}\sqrt{9x-36}=4-\sqrt{x-4}\)
b.\(3\sqrt{x-2}-\sqrt{x^2-4}=0\)
c.\(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=-5-x^2+6x\)
a,ĐK: x≥4
Ta có: \(2\sqrt{x-4}-\dfrac{1}{3}\sqrt{9x-36}=4-\sqrt{x-4}\)
\(\Leftrightarrow2\sqrt{x-4}-\sqrt{x-4}=4-\sqrt{x-4}\)
\(\Leftrightarrow2\sqrt{x-4}=4\)
\(\Leftrightarrow\sqrt{x-4}=2\Leftrightarrow x-4=4\Leftrightarrow x=8\left(tm\right)\)
b, ĐK: x≥2
Ta có: \(3\sqrt{x-2}-\sqrt{x^2-4}=0\)
\(\Leftrightarrow3\sqrt{x-2}-\sqrt{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(3-\sqrt{x+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\3-\sqrt{x+2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x+2}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x+2=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=7\end{matrix}\right.\)
giải pt sau : căn 9x+9 + căn 4x+4 -2 căn 16x+16 = căn x+1-8
Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}-2\sqrt{16x+16}=\sqrt{x+1}-8\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-8\sqrt{x+1}-\sqrt{x+1}=-8\)
\(\Leftrightarrow\sqrt{x+1}=2\)
\(\Leftrightarrow x+1=4\)
hay x=3