Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vân Vũ Mỹ
Xem chi tiết
Toru
19 tháng 10 2023 lúc 20:06

\(A=2+2^2+2^3+...+2^{2020}+2^{2021}+2^{2022}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{2021}+2^{2022})\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+...+2^{2021}\cdot(1+2)\\=2\cdot3+2^3\cdot3+2^5\cdot3+...+2^{2021}\cdot3\\=3\cdot(2+2^3+2^5+..+2^{2021})\)

Vì \(3\cdot\left(2+2^3+2^5+...+2^{2021}\right)⋮3\)

nên \(A⋮3\).

\(Toru\)

Tai Nguyen
19 tháng 10 2023 lúc 20:08

A=(2+22)+22(2+22)+...+22020(2+22)

A= 6.1+22.6+...+22020.6

A=6(1+22+...+22020) chia hết cho 3

vậy A chia hết cho 3

Phan Nguyên Anh
19 tháng 10 2023 lúc 20:13

A=(2+22)+(23+24)+(25+26)+.......+(22019+22020)+(22021+22022)

A=2.(1+2)+23.(1+2)+25.(1+2)+.......+22019.(1+2)+22021.(1+2)

A=2.3+23.3+25.3+.......+22019.3+22021.3

A=3.(2+23+25+........+22019+22021)

Vì 3⋮3⇒A⋮3

Thuan Giap
Xem chi tiết
Nguyễn Hoàng Tùng
23 tháng 12 2021 lúc 16:42

\(A=1+2+2^2+...+2^{2020}+2^{2021}\\ \Rightarrow2A=2+2^2+2^3+...+2^{2021}+2^{2022}\\ \Rightarrow2A-A=A=2^{2022}-1\)

Vậy \(A\) và \(B\) là 2 số tự nhiên liên tiếp.

Nguyễn Thế Dũng
Xem chi tiết
Nguyễn Thế Dũng
16 tháng 4 2022 lúc 10:21

kp[

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thuan Giap
Xem chi tiết
Lionel Messi
22 tháng 12 2021 lúc 23:53

A = 1 + 2 + 22 + ... + 22021
2A = 2 + 4 + 23 + ... 22022
A = 22022 - 1

Minh Hiếu
23 tháng 12 2021 lúc 5:30

\(A=1+2+2^2+...+2^{2020}+2^{2021}\)

\(2A=2+2^2+2^3+...+2^{2021}+2^{2022}\)

\(2A-A=\left(2+2^2+2^3+...+2^{2021}+2^{2022}\right)-\left(1+2+2^2+...+2^{2020}+2^{2021}\right)\)

\(A=2^{2022}-1\)

phạm hoàng minh
Xem chi tiết
Pika Pika
7 tháng 5 2021 lúc 23:19

2A=2*(1+2+22+...+22020)=2+22+...+22021

2A-A=(1+2+22+...+22021)-(1+2+22+...+22020)

A=22021-1<2021

Giải:

A=1+2+22+23+...+22020

2A=2+22+23+24+...+22021

2A-A=(2+22+23+24+...+22021)-(1+2+22+23+...+22020)

A=22021-1

⇒A<22021

Chúc bạn học tốt!

Phong Khải
Xem chi tiết
Cấn Thị Vân Anh
11 tháng 5 2023 lúc 21:56

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)

\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}.\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)\)\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)

\(\Rightarrow A-\dfrac{1}{2}A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^{2022}}\)

\(\Rightarrow\dfrac{1}{2}A=\dfrac{2^{2021}-1}{2^{2022}}\)

\(\Rightarrow A=\dfrac{2^{2021}-1}{2^{2023}}.2=\dfrac{2^{2021}-1}{2^{2021}}\)

Vậy \(A=\dfrac{2^{2021}-1}{2^{2021}}\)

 

Hỉ Phạm
Xem chi tiết
Hỉ Phạm
28 tháng 12 2021 lúc 20:32

nhanh nhanh nhanh nhanh nhanh nhanh nhanh nhanh

 

 

ILoveMath
28 tháng 12 2021 lúc 20:33

\(A=1+2+2^2+...+2^{2020}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{2021}\)

\(\Rightarrow2A-A=2+2^2+2^3+...+2^{2021}-1-2-2^2-...-2^{2020}\)

\(\Rightarrow A=2^{2021}-1\)

\(\Rightarrow A=2^{2021}-1=B\)

ẩn danh??
28 tháng 12 2021 lúc 20:34

sorry mình chưa học

Lê Phạm Bảo Hân
Xem chi tiết
Akai Haruma
31 tháng 12 2023 lúc 14:40

Câu 1: 

$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$

$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$

$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$

-----------------

$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$

$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$

$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$

$=2+7(2^2+2^5+...+2^{2018})$

$\Rightarrow A$ chia $7$ dư $2$.

Akai Haruma
31 tháng 12 2023 lúc 14:41

Câu 2:

$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$

$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$

-------------------

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$

$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)

nguyễn thái an
Xem chi tiết
Nguyễn Thị Thanh Phúc
18 tháng 4 2022 lúc 7:21

A=1/2+1/22+1/23+...+1/22020+1/22021 > B=1/3+1/4+1/5+13/60

Phạm Nguyễn Ngọc Nhi
22 tháng 3 lúc 10:42

Ta có: �=12+122+123+124+...+122021+122022

⇒2�=1+12+122+123+...+122020+122021

⇒2�-�=(1+12+122+123+...+122020+122021)-(12+122+123+124+...+122021+122022)

⇒�=1-122022<1

⇒�<1   (1)

Lại có: �=13+14+15+1760

⇒�=1615

⇒�=1+115>1

⇒�>1    (2)

Từ (1) và (2)⇒�<�

Vậy 

vo ngoc han
Xem chi tiết
Nguyễn Đức Trí
27 tháng 8 2023 lúc 8:30

\(S=1+2+2^2+2^3+2^4+...+2^{2011}\)

\(\Rightarrow S=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{2009}\left(1+2+2^2\right)\)

\(\Rightarrow S=7+2^3.7+...+2^{2009}.7\)

\(\Rightarrow S=7\left(1+2^3+...+2^{2009}\right)⋮7\)

\(\Rightarrow dpcm\)