\(\sqrt{x\left(x^2+9\right)\left(x+9\right)}+\sqrt{22}=\sqrt{22}x\)
giải phương trình :
a, \(\sqrt{x+1}+x+3=\sqrt{1-x}+3\sqrt{1-x^2}\)
b,\(\left(2x-3\right)\sqrt{3+x}+2x\sqrt{3-x}=6x-8+\sqrt{9-x^2}\)
c, \(2x^2-5x+22=5\sqrt{x^3-11x +20}\)
d, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}=6x\)
1)\(\sqrt{x+3}\) > 2
2) \(\dfrac{1+\sqrt{x}}{\sqrt{x}-2}\)<1
3) \(\left(\sqrt{x}-1\right)\).\(\left(\sqrt{x}-3\right)\)-5=\(\sqrt{x}\) \(\left(\sqrt{x}+2\right)-5\)
tìm x mn giúp mình nha plsss
1: ĐKXĐ: x+3>=0
=>x>=-3
\(\sqrt{x+3}>2\)
=>x+3>4
=>x>4-3=1
2: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)
\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}< 1\)
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-1< 0\)
=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)
=>\(\dfrac{3}{\sqrt{x}-2}< 0\)
=>\(\sqrt{x}-2< 0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4
3: ĐKXĐ: x>=0
\(\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)-5=\sqrt{x}\left(\sqrt{x}+2\right)-5\)
=>\(x-4\sqrt{x}+3-5=x+2\sqrt{x}-5\)
=>\(x-4\sqrt{x}-2-x-2\sqrt{x}+5=0\)
=>\(-6\sqrt{x}+3=0\)
=>\(-6\sqrt{x}=-3\)
=>\(\sqrt{x}=\dfrac{1}{2}\)
=>x=1/4(nhận)
\(\left\{{}\begin{matrix}\left(x^2+9\right)\left(x^2+9y\right)=22\left(y-1\right)^2\\x^2-2=4y\sqrt{y-1}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x^2+9\right)\left(x^2+9y\right)=22\left(y-1\right)^2\\x^2-2=4y\sqrt{y+1}\end{matrix}\right.\)
\(\left(x^2+9\right)\left[x^2+9+9\left(y-1\right)\right]=22\left(y-1\right)^2\)
Đặt \(\left\{{}\begin{matrix}x^2+9=a\\y-1=b\end{matrix}\right.\)
\(\Rightarrow a\left(a+9b\right)=22b^2\Leftrightarrow a^2+9ab-22b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a+11b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=2b\\a=-11b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+9=2\left(y-1\right)\\x^2+9=-11\left(y-1\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-2=2y-13\\x^2-2=-11y\end{matrix}\right.\) thay xuống dưới:
TH1: \(x^2-2=2y-13\Rightarrow2y-13=4y\sqrt{y+1}\)
Đặt \(\sqrt{y+1}=t\ge0\)
\(\Rightarrow2\left(t^2-1\right)-13=4t\left(t^2-1\right)\)
\(\Leftrightarrow4t^3-2t^2-4t+15=0\) (pt bậc 3 này ko giải được bằng kiến thức phổ thông :) )
TH2: \(x^2-2=-11y\Rightarrow-11y=4y\sqrt{y+1}\)
\(\Rightarrow y=0\Rightarrow x=\pm\sqrt{2}\)
\(\hept{\begin{cases}\left(x^2+9\right)\left(x^2+9y\right)=22\left(y-1\right)^2\\x^2-2=4y\sqrt{y-1}\end{cases}}\)
Từ \(pt\left(1\right)\Leftrightarrow\left(x^2+11y-2\right)\left(x^2+2y-11\right)=0\)
Bạn thay vào giải là ra nhé
RÚT GỌN CÁC BIỂU THỨC SAU:
21) \(A = \left(\dfrac{x\sqrt{x} + 1}{x - 1} - \dfrac{x - 1}{\sqrt{x} - 1}\right) : \left(\sqrt{x} + \dfrac{\sqrt{x}}{\sqrt{x} - 1}\right) \)
22) \(A = \left(\dfrac{x}{\sqrt{x} - 1} - \sqrt{x}\right) : \left(\dfrac{\sqrt{x} + 1}{\sqrt{x}} - \dfrac{1}{1 - \sqrt{x}} + \dfrac{2 - x}{x - \sqrt{x}}\right)\)
23) \(A = \left(\dfrac{\sqrt{x} - 4}{x - 2\sqrt{x}} - \dfrac{3}{2 - \sqrt{x}}\right) : \left(\dfrac{\sqrt{x} + 2}{\sqrt{x}} - \dfrac{\sqrt{x}}{\sqrt{x} - 2}\right)\)
24) \(A = \left(\dfrac{2x + 1}{x\sqrt{x} - 1} + \dfrac{1}{1 - \sqrt{x}}\right) : \left(1 - \dfrac{x - 2}{x + \sqrt{x} + 1}\right)\)
25) \(A = 1 : \left(\dfrac{x + 2\sqrt{x} - 2}{x\sqrt{x} + 1} - \dfrac{\sqrt{x} -1}{x - \sqrt{x} + 1} + \dfrac{1}{\sqrt{x} + 1}\right)\)
26) \(A = \left(\dfrac{\sqrt{x}}{\sqrt{x} + 2} - \dfrac{3}{2 - \sqrt{x}} + \dfrac{3\sqrt{x} - 2}{x - 2}\right) : \left(\dfrac{\sqrt{x} + 3}{\sqrt{x} - 2} + \dfrac{2\sqrt{x}}{2\sqrt{x} - x}\right)\)
27) \(P = \left(\dfrac{4\sqrt{x}}{2 + \sqrt{x}} + \dfrac{8}{4 - x}\right) : \left(\dfrac{\sqrt{x} - 1}{x - 2\sqrt{x}} - \dfrac{2}{\sqrt{x}}\right)\)
21: ĐKXĐ: x>0; x<>1
\(A=\left(\dfrac{x\sqrt{x}+1-\left(x-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}-x+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{x}\)
\(=\dfrac{-x+\sqrt{x}+2}{\sqrt{x}+1}\cdot\dfrac{1}{x}\)
\(=\dfrac{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}=\dfrac{-\sqrt{x}+2}{x}\)
22:
DKXĐ: x>0; x<>1
\(A=\dfrac{x-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}:\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}+\dfrac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x-1+\sqrt{x}+2-x}\)
\(=\dfrac{x}{\sqrt{x}+1}\)
23: ĐKXĐ: x>0; x<>4
\(A=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-x}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-4}\)
\(=\dfrac{-4\sqrt{x}+4}{4}=-\sqrt{x}+1\)
24: ĐKXĐ: x>=0; x<>1
\(A=\dfrac{2x+1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x+2}{x+\sqrt{x}+1}\)
\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+3}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
25:
ĐKXĐ: x>=0; x<>1
\(A=1:\dfrac{x+2\sqrt{x}-2-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{2x+\sqrt{x}-1-x+1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x+\sqrt{x}}=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)
27: ĐKXĐ: x>0; x<>4
\(P=\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4x-8\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-1-2\sqrt{x}+1}\)
\(=\dfrac{4\left(x-2\sqrt{x}-2\right)}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}}{-\sqrt{x}}\)
\(=\dfrac{-4\left(x-2\sqrt{x}-2\right)}{\sqrt{x}+2}\)
22.\(A=\left(\frac{x}{\sqrt{x}-1}-\sqrt{x}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)
\(A=\left(\frac{x}{\sqrt{x}-1}-\sqrt{x}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)
\(=\frac{x-x+\sqrt{x}}{\sqrt{x}-1}:\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-1}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=\frac{x}{\sqrt{x}+1}\)
Rút gọn các biểu thức sau:
\(D=\left(\frac{5\sqrt{x-6}}{x-9}-\frac{2}{\sqrt{x}+3}\right):\left(1+\frac{6}{x-9}\right)\)
\(E=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{9+x}{9-x}\right).\left(3\sqrt{x}-x\right)\)
a) \(8\sqrt{x+2}\) + \(\sqrt{11-x}\) - \(2\sqrt{22+9x-x^2}\)+ 4 =0
b) \(\sqrt{1+4x}\)+ \(2\sqrt{2-x}\)+\(2\sqrt{\left(1+4x\right)\left(2-x\right)}\)=3
c) \(\sqrt{8+\sqrt{x}}\)+\(\sqrt{5-\sqrt{x}}\)=5
d) \(\sqrt{x^4-1}\)-2 =\(\sqrt{x-1}\)- \(2\sqrt{x^3+x^2+x+1}\)
c) \(\sqrt[]{8+\sqrt[]{x}}+\sqrt{5-\sqrt[]{x}}=5\)
\(\Leftrightarrow\left(\sqrt[]{8+\sqrt[]{x}}+\sqrt{5-\sqrt[]{x}}\right)^2=25\left(1\right)\left(đkxđ:0\le x\le25\right)\)
Áp dụng Bất đẳng thức Bunhiacopxki cho 2 cặp số dương \(\left(1;\sqrt[]{8+\sqrt[]{x}}\right);\left(1;\sqrt{5-\sqrt[]{x}}\right)\)
\(\left(1.\sqrt[]{8+\sqrt[]{x}}+1.\sqrt{5-\sqrt[]{x}}\right)^2\le\left(1^2+1^2\right)\left(8+\sqrt[]{x}+5-\sqrt[]{x}\right)=26\)
\(\left(1\right)\Leftrightarrow26=25\left(vô.lý\right)\)
Vậy phương trình đã cho vô nghiệm
b) \(\sqrt[]{1+4x}+2\sqrt[]{2-x}+2\sqrt[]{\left(1+4x\right)\left(2-x\right)}=3\) \(\left(đkxđ:-\dfrac{1}{4}\le x\le2\right)\)
\(\)\(\Leftrightarrow\sqrt[]{1+4x}+2\sqrt[]{2-x}=3-2\sqrt[]{\left(1+4x\right)\left(2-x\right)}\)
\(\Leftrightarrow\left(\sqrt[]{1+4x}+2\sqrt[]{2-x}\right)^2=\left[3-2\sqrt[]{\left(1+4x\right)\left(2-x\right)}\right]^2\left(1\right)\)
Áp dụng Bất đẳng thức Bunhiacopxki :
\(\left(1.\sqrt[]{1+4x}+2\sqrt[]{2-x}\right)^2\le\left(1^2+2^2\right)\left(1+4x+2-x\right)=5\left(3x+3\right)\)
Áp dụng Bất đẳng thức Cauchy :
\(2\sqrt[]{\left(1+4x\right)\left(2-x\right)}\le1+4x+2-x=3x+3\)
Dấu "=" xảy ra khi và chỉ khi
\(1+4x=2-x\)
\(\Leftrightarrow x=\dfrac{1}{5}\left(thỏa.đk\right)\)
\(pt\left(1\right)\Leftrightarrow5\left(4x+3\right)=4x+3\)
\(\Leftrightarrow4\left(4x+3\right)=0\)
\(\Leftrightarrow x=-\dfrac{3}{4}\left(k.thỏa.x=\dfrac{1}{5}.vô.lý\right)\)
Vậy phương trình đã cho vô nghiệm