Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thị Thúy
Xem chi tiết
phong
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 11 2023 lúc 22:00

1: ĐKXĐ: x+3>=0

=>x>=-3

\(\sqrt{x+3}>2\)

=>x+3>4

=>x>4-3=1

2: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)

\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}< 1\)

=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-1< 0\)

=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)

=>\(\dfrac{3}{\sqrt{x}-2}< 0\)

=>\(\sqrt{x}-2< 0\)

=>\(\sqrt{x}< 2\)

=>0<=x<4

3: ĐKXĐ: x>=0

\(\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)-5=\sqrt{x}\left(\sqrt{x}+2\right)-5\)

=>\(x-4\sqrt{x}+3-5=x+2\sqrt{x}-5\)

=>\(x-4\sqrt{x}-2-x-2\sqrt{x}+5=0\)

=>\(-6\sqrt{x}+3=0\)

=>\(-6\sqrt{x}=-3\)

=>\(\sqrt{x}=\dfrac{1}{2}\)

=>x=1/4(nhận)

nguyễn hương giang
Xem chi tiết
Bánh Mì
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 6 2020 lúc 18:05

\(\left(x^2+9\right)\left[x^2+9+9\left(y-1\right)\right]=22\left(y-1\right)^2\)

Đặt \(\left\{{}\begin{matrix}x^2+9=a\\y-1=b\end{matrix}\right.\)

\(\Rightarrow a\left(a+9b\right)=22b^2\Leftrightarrow a^2+9ab-22b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a+11b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=2b\\a=-11b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+9=2\left(y-1\right)\\x^2+9=-11\left(y-1\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-2=2y-13\\x^2-2=-11y\end{matrix}\right.\) thay xuống dưới:

TH1: \(x^2-2=2y-13\Rightarrow2y-13=4y\sqrt{y+1}\)

Đặt \(\sqrt{y+1}=t\ge0\)

\(\Rightarrow2\left(t^2-1\right)-13=4t\left(t^2-1\right)\)

\(\Leftrightarrow4t^3-2t^2-4t+15=0\) (pt bậc 3 này ko giải được bằng kiến thức phổ thông :) )

TH2: \(x^2-2=-11y\Rightarrow-11y=4y\sqrt{y+1}\)

\(\Rightarrow y=0\Rightarrow x=\pm\sqrt{2}\)

Ánh Nguyệt Đỗ
Xem chi tiết
Thắng Nguyễn
17 tháng 8 2018 lúc 23:23

Từ \(pt\left(1\right)\Leftrightarrow\left(x^2+11y-2\right)\left(x^2+2y-11\right)=0\)

Bạn thay vào giải là ra nhé

Phạm Trần Phát
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 9 2023 lúc 19:57

21: ĐKXĐ: x>0; x<>1

\(A=\left(\dfrac{x\sqrt{x}+1-\left(x-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}}{\sqrt{x}-1}\)

\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}-x+\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{x}\)

\(=\dfrac{-x+\sqrt{x}+2}{\sqrt{x}+1}\cdot\dfrac{1}{x}\)

\(=\dfrac{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}=\dfrac{-\sqrt{x}+2}{x}\)

22:
DKXĐ: x>0; x<>1

\(A=\dfrac{x-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}:\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}+\dfrac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{x-1+\sqrt{x}+2-x}\)

\(=\dfrac{x}{\sqrt{x}+1}\)

23: ĐKXĐ: x>0; x<>4

\(A=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}:\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-x}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-4}\)

\(=\dfrac{-4\sqrt{x}+4}{4}=-\sqrt{x}+1\)

24: ĐKXĐ: x>=0; x<>1

\(A=\dfrac{2x+1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x+2}{x+\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+3}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

25:

ĐKXĐ: x>=0; x<>1

\(A=1:\dfrac{x+2\sqrt{x}-2-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{2x+\sqrt{x}-1-x+1}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x+\sqrt{x}}=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

27: ĐKXĐ: x>0; x<>4

\(P=\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{4x-8\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-1-2\sqrt{x}+1}\)

\(=\dfrac{4\left(x-2\sqrt{x}-2\right)}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}}{-\sqrt{x}}\)

\(=\dfrac{-4\left(x-2\sqrt{x}-2\right)}{\sqrt{x}+2}\)

Cheerry. ryy
Xem chi tiết
@Nk>↑@
6 tháng 10 2019 lúc 15:26

\(A=\left(\frac{x}{\sqrt{x}-1}-\sqrt{x}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)

\(=\frac{x-x+\sqrt{x}}{\sqrt{x}-1}:\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-1}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=\frac{x}{\sqrt{x}+1}\)

Quynh Existn
Xem chi tiết
Nguyễn Huy Tú
21 tháng 7 2021 lúc 19:00

undefined

Nguyễn Aí Linh
Xem chi tiết
Nguyễn Đức Trí
12 tháng 9 2023 lúc 8:19

c) \(\sqrt[]{8+\sqrt[]{x}}+\sqrt{5-\sqrt[]{x}}=5\)

\(\Leftrightarrow\left(\sqrt[]{8+\sqrt[]{x}}+\sqrt{5-\sqrt[]{x}}\right)^2=25\left(1\right)\left(đkxđ:0\le x\le25\right)\)

Áp dụng Bất đẳng thức Bunhiacopxki cho 2 cặp số dương \(\left(1;\sqrt[]{8+\sqrt[]{x}}\right);\left(1;\sqrt{5-\sqrt[]{x}}\right)\)

\(\left(1.\sqrt[]{8+\sqrt[]{x}}+1.\sqrt{5-\sqrt[]{x}}\right)^2\le\left(1^2+1^2\right)\left(8+\sqrt[]{x}+5-\sqrt[]{x}\right)=26\)

\(\left(1\right)\Leftrightarrow26=25\left(vô.lý\right)\)

Vậy phương trình đã cho vô nghiệm

b) \(\sqrt[]{1+4x}+2\sqrt[]{2-x}+2\sqrt[]{\left(1+4x\right)\left(2-x\right)}=3\)  \(\left(đkxđ:-\dfrac{1}{4}\le x\le2\right)\)

\(\)\(\Leftrightarrow\sqrt[]{1+4x}+2\sqrt[]{2-x}=3-2\sqrt[]{\left(1+4x\right)\left(2-x\right)}\)

\(\Leftrightarrow\left(\sqrt[]{1+4x}+2\sqrt[]{2-x}\right)^2=\left[3-2\sqrt[]{\left(1+4x\right)\left(2-x\right)}\right]^2\left(1\right)\)

Áp dụng Bất đẳng thức Bunhiacopxki :

\(\left(1.\sqrt[]{1+4x}+2\sqrt[]{2-x}\right)^2\le\left(1^2+2^2\right)\left(1+4x+2-x\right)=5\left(3x+3\right)\)

Áp dụng Bất đẳng thức Cauchy :

\(2\sqrt[]{\left(1+4x\right)\left(2-x\right)}\le1+4x+2-x=3x+3\)

Dấu "=" xảy ra khi và chỉ khi

\(1+4x=2-x\)

\(\Leftrightarrow x=\dfrac{1}{5}\left(thỏa.đk\right)\)

\(pt\left(1\right)\Leftrightarrow5\left(4x+3\right)=4x+3\)

\(\Leftrightarrow4\left(4x+3\right)=0\)

\(\Leftrightarrow x=-\dfrac{3}{4}\left(k.thỏa.x=\dfrac{1}{5}.vô.lý\right)\)

Vậy phương trình đã cho vô nghiệm