Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
AllesKlar
Xem chi tiết
Hoàng Tử Hà
14 tháng 5 2022 lúc 19:06

đề bài thiếu, ko giải được, cái nghiệm -1 có thể của f(u) hoặc của u' 

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 15:58

a)     Đồ thị hàm số:

-        Với mỗi \(m \in \left[ { - 1;1} \right]\) chỉ có 1 giá trị \(\alpha  \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\sin \alpha  = m\)

b)     Đồ thị hàm số:

-        Với mỗi \(m \in \left[ { - 1;1} \right]\) có 1 giá trị \(\alpha  \in \left[ {0;\pi } \right]\) sao cho \(\cos \alpha  = m\)

c)     Đồ thị hàm số:

 

-        Với mỗi \(m \in \mathbb{R}\), có 2 giá trị \(\alpha  \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\tan \alpha  = m\)

d)     Đồ thị hàm số:

-        Với mỗi \(m \in \mathbb{R}\), có 2 giá trị \(\alpha  \in \left[ {0;\pi } \right]\) sao cho \(\cot \alpha  = m\)

DuaHaupro1
Xem chi tiết
Thanh Hoàng Thanh
10 tháng 5 2022 lúc 20:46

undefined

Kinder
Xem chi tiết
Lê Thị Thục Hiền
5 tháng 7 2021 lúc 16:02

a) Pt\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2xcos^2x\left(sin^2x+cos^2x\right)+3sinx.cosx-\dfrac{m}{4}+2=0\)

\(\Leftrightarrow1-\dfrac{3}{4}sin^22x-\dfrac{3}{2}sin2x-\dfrac{m}{4}+2=0\)

\(\Leftrightarrow-3sin^22x-6sin2x-m+12=0\)

Đặt \(t=sin2x;t\in\left[-1;1\right]\)

Pttt: \(-3t^2-6t-m+12=0\)

\(\Leftrightarrow-3t^2-6t+12=m\) (1)

Đặt \(f\left(t\right)=-3t^2-6t+12;t\in\left[-1;1\right]\) 

Vẽ BBT sẽ tìm được \(f\left(t\right)_{min}=3;f\left(t\right)_{max}=15\)\(\Leftrightarrow3\le f\left(t\right)\le15\)\(\Rightarrow m\in\left[3;15\right]\) thì pt (1) sẽ có nghiệm

mà \(m\in Z\) nên tổng m nguyên để pt có nghiệm là 13 m

Vậy có tổng 13 m nguyên

Lê Thị Thục Hiền
5 tháng 7 2021 lúc 16:13

b) Pt\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\left(1\right)\\2cos^2x-\left(2m+1\right)cosx+m=0\left(2\right)\end{matrix}\right.\)

Từ (1)\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\left(k\in Z\right)\)

\(x\in\left[0;2\pi\right]\Rightarrow0\le\dfrac{\pi}{2}+k2\pi\le2\pi\)\(\Leftrightarrow-\dfrac{1}{4}\le k\le\dfrac{3}{4}\)\(\Rightarrow k=0\)

Tại k=0\(\Rightarrow x=\dfrac{\pi}{2}\)

Để pt ban đầu có 4 nghiệm pb \(\in\left[0;2\pi\right]\)

\(\Leftrightarrow\) Pt (2) có 3 nghiệm pb khác \(\dfrac{\pi}{2}\)

Xét pt (2) có: \(2cos^2x-\left(2m+1\right)cosx+m=0\)

Vì là phương trình bậc hai ẩn \(cosx\) nên pt (2) chỉ có nhiều nhất ba nghiệm \(\Leftrightarrow\) Pt (2) có một nghiệm cosx=0

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\) mà \(x\ne\dfrac{\pi}{2}\)

\(\Rightarrow\) Pt (2) chỉ có nhiều nhất hai nghiệm

\(\Rightarrow\) Pt ban đầu không thể có 4 nghiệm phân biệt

Vậy \(m\in\varnothing\) 

Kinder
Xem chi tiết
Hồng Phúc
26 tháng 1 2021 lúc 20:11

Đồ thị hàm số \(y=f\left(\left|x\right|\right)\)

\(f^2\left(\left|x\right|\right)+\left(m-1\right)f\left(\left|x\right|\right)-m=0\left(1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=1\left(2\right)\\f\left(\left|x\right|\right)=-m\left(3\right)\end{matrix}\right.\)

Từ đồ thị ta thấy phương trình \(\left(2\right)\) có hai nghiệm phân biệt nên phương trình \(\left(1\right)\) có hai nghiệm phân biệt khi phương trình \(\left(3\right)\) có hai nghiệm phân biệt khác hai nghiệm của phương trình \(\left(2\right)\).

\(\Leftrightarrow\left[{}\begin{matrix}-m=-3\\-1< -m< 1\\-m>1\end{matrix}\right.\)

...

Nguyễn Văn Trí
Xem chi tiết
Hoàng Tử Hà
24 tháng 7 2023 lúc 19:16

\(y'=\dfrac{x-m-x+1}{\left(x-m\right)^2}=\dfrac{1-m}{\left(x-m\right)^2}\)

Hàm số nghịch biến trên khoảng \(\left(-\infty;2\right)\Leftrightarrow y'< 0\forall x\in\left(-\infty;2\right)\Leftrightarrow\left\{{}\begin{matrix}1-m< 0\\x\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\ge2\end{matrix}\right.\Rightarrow m\ge2\)

Có 19-2+1=18 giá trị nguyên của m thỏa mãn

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
9 tháng 10 2023 lúc 23:10

a) \(A = \left\{ {a \in \mathbb{Z}| - 4 < a <  - 1} \right\}\)

A là tập hợp các số nguyên a thỏa mãn \( - 4 < a <  - 1\).

\( - 4 < a <  - 1\) có nghĩa là: a là số nguyên nằm giữa \( - 4\) và \( - 1\). Có các số \( - 3; - 2\).

Vậy \(A = \left\{ { - 3; - 2} \right\}\)

b) \(B = \left\{ {b \in \mathbb{Z}| - 2 < b < 3} \right\}\)

B là tập hợp các số nguyên b thỏa mãn \( - 2 < b < 3\).

\( - 2 < b < 3\) có nghĩa là: b là số nguyên nằm giữa \( - 2\) và \(3\). Có các số \( - 1;0;1;2\).

Vậy \(B = \left\{ { - 1;0;1;2} \right\}\)

c) \(C = \left\{ {c \in \mathbb{Z}| - 3 < c < 0} \right\}\)

C  là tập hợp các số nguyên c thỏa mãn \( - 3 < c < 0\).

\( - 3 < c < 0\) có nghĩa là: c là số nguyên nằm giữa \( - 3\) và 0. Có các số \( - 2; - 1\).

Vậy \(C = \left\{ { - 2; - 1} \right\}\)

d) \(D = \left\{ {d \in \mathbb{Z}| - 1 < d < 6} \right\}\)

D là tập hợp các số nguyên d thỏa mãn \( - 1 < d < 6\).

\( - 1 < d < 6\) có nghĩa là: b là số nguyên nằm giữa \( - 1\) và 6. Có các số \(0;1;2;3;4;5\).

Vậy \(D = \left\{ {0;1;2;3;4;5} \right\}\)

Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 11 2023 lúc 0:01

Biểu diễn được 3 điểm

vvvvvvvv
Xem chi tiết
Hồng Phúc
15 tháng 3 2021 lúc 16:52

Với \(m=0\Rightarrow f\left(x\right)=-2x-1\le0\Leftrightarrow x\ge-\dfrac{1}{2}\)

\(\Rightarrow m=0\) không thỏa mãn yêu cầu bài toán.

Với \(m\ne0\)\(f\left(x\right)\le0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=1+m\le0\end{matrix}\right.\Leftrightarrow m\le-1\)

\(\Rightarrow m\in\left\{m\in Z|-10< m\le-1\right\}\)

Vậy có 9 số nguyên thỏa mãn yêu cầu bài toán.