Chia đa thức cho đơn thức, chia đa thức một biến đã sắp xếp
(4x^3 - 4x^2 - 5x + 15) : (x -3 )
giúp mình giải vs chia đa thức một biến đã sắp xếp (x3+3x2+4x+2)÷(x+1)
1/Phân tích các đa thức sau thành nhân tử
a/x2-3xy-10y2
b)2x2-5x-7
2/Tìm x
a/x(x-2)-x+2=0
b/x2(x2+1)-x2-1=0
c/5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
d/(x+2)(3-4x)=x2+4x+4
3/
a/Sắp xếp các đa thức theo lũy thừa giảm dần của biến rồi làm tính chia:
(4x2-5x+x3-20):(x+4)
b/Tìm số a để đa thức x3-3x2+5x+a chia hết cho đa thức x-3
Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15
cho đa thức f(x)=-2x^3+x-1+4x^2-5x+3x^3
a.thu gọn và sắp xếp đa thức f(x) theo lũy thừa giảm dần của biến
b.tìm hệ số tự do và bậc của đa thức f(x)
Lời giải:
a.
$f(x) =-2x^3+x-1+4x^2-5x+3x^3=(-2x^3+3x^3)+4x^2+(-5x+x)-1$
$=x^3+4x^2-4x-1$
b.
Hệ số tự do: $-1$
Bậc $f(x)$: 3
CHIA ĐA THỨC CHO 1 BIẾN ĐÃ SẮP XẾP
a, (-x^3+5x^2-9x+15) : (-3x+5)
b,(x^4-2x^3+2x-1) : (x^2-1)
c, (5x^4-9x^3-2x^2-4x-8) : (x-1)
d, (5x^3+14x^2+12x+8) : (x+2)
giúp em với ạ
Câu 14: (1.75 điểm)Cho hai đa thức một biến: P(x)=4x+3x²+x²+1-5x-2x Q(x)=3x+x+7-5x²+5x-11 a) Hãy viết đa thức thu gọn P(x) và Q(x) sau đó sắp xếp các đơn thức theo lũy thừa giảm dần của biến. b) Xác định bậc của đa thức P(x) và Q(x). c) Tính P(x)+Q(x)
`a)`
\(P\left(x\right)=4x+3x^2+x^2+1-5x-2x\\ =\left(3x^2+x^2\right)+\left(4x-5x-2x\right)+1\\ =4x^2-3x+1\\ Q\left(x\right)=3x+x+7-5x^2+5x-11\\ =-5x^2+\left(3x+x+5x\right)+\left(7-11\right)\\ =-5x^2+9x-4\)
`b)`
Đa thức `P(x)` có :
Bậc `2`
Đa thức `Q(x)` có :
Bậc `2`
`c)`
\(P\left(x\right)+Q\left(x\right)=\left(4x^2-3x+1\right)+\left(-5x^2+9x-4\right)\\ =4x^2-3x+1-6x^2+9x-4\\ =\left(4x^2-5x^2\right)-\left(3x-9x\right)+\left(1-4\right)\\ =-x^2+6x-3\)
a: P(x)=4x^2+4x+1-7x=4x^2-3x+1
Q(x)=-5x^2+9x-4
b: P(x) có bậc 2
Q(x) có bậc 2
c: P(x)+Q(x)=4x^2-3x+1-5x^2+9x-4=-x^2+6x-3
CHO 2 ĐA THỨC
P(X)= 4x^3 -2x +2+x^2 -4x^3+2x^3+5+x
Q(x)=5x^3-x^2+3x-5^3+3+4x^2+2x-2
a) thu gọn đa thức và sắp xếp theo lũy trhuwaf giảm dần của biến
b)tính M(x)=P(x)-Q(x) rồi tính nghiệm của đa thức M(x)
a)\(P\left(x\right)=4x^3-2x+2+x^2-4x^3+2x^3+5+x\)
\(P\left(x\right)=\left(4x^3-4x^3+2x^3\right)+\left(-2x+x\right)+\left(2+5\right)+x^2\)
\(P\left(x\right)=2x^3-x+7+x^2\)
*Sắp xếp: \(P\left(x\right)=2x^3+x^2-x+7\)
\(Q\left(x\right)=5x^3-x^2+3x-5x^3+3+4x^2+2x-2\)
\(Q\left(x\right)=\left(5x^3-5x^3\right)+\left(-x^2+4x^2\right)+\left(3x+2x\right)+\left(3-2\right)\)
\(Q\left(x\right)=2x^2+5x+1\)
*Sắp xếp:\(Q\left(x\right)=2x^2+5x+1\)
b) Ta có: \(M\left(x\right)=P\left(x\right)-Q\left(x\right)=2x^3+x^2-x+7-2x^2-5x-1\)
\(M\left(x\right)=P\left(x\right)-Q\left(x\right)=2x^3+\left(x^2-2x^2\right)+\left(-x-5x\right)+\left(7-1\right)\)
\(M\left(x\right)=P\left(x\right)-Q\left(x\right)=2x^3-x^2-6x+6\)
xin lỗi nhé , lúc nãy mik bận nên ko giúp được
mik thấy có bạn Trịnh Công Mạnh Đồng trả lời rồi đó
Bạn ấy làm đúng rồi
^^
cho 2 đa thức
A(X) = 5X^4-5 + 6X^3 +X^4 -5X^-12
B(X) = 8X^4 +2X^3 -2X^4+4X^3 -5X -15 -2X^2
a) thu gon A (X) , B(X) VÀ sắp xếp các đa thức theo thứ tự giảm dần
b) tìm nghiệm của đa thức C(x) , biết C(X) = A(X)-B(X)
a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12
= (5x4 + x4) + (- 5 - 12) + 6x3 - 5x
= 6x4 - 17 + 6x3 - 5x
= 6x4 + 6x3 - 5x - 17
B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2
= (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2
= 4x4 + 6x3 - 5x - 15 - 2x2
= 4x4 + 6x3 - 2x2 - 5x - 15
b) C(x) = A(x) - B(x)
= 6x4 + 6x3 - 5x - 17 - (4x4 + 6x3 - 2x2 - 5x - 15)
= 6x4 + 6x3 - 5x - 17 - 4x4 - 6x3 + 2x2 + 5x + 15
= ( 6x4 - 4x4) + ( 6x3 - 6x3) + (- 5x + 5x) + (-17 + 15) + 2x2
= 2x4 - 2 + 2x2
= 2x4 + 2x2 - 2
1/Phân tích các đa thức sau thành nhân tử
a/x2-3xy-10y2
b)2x2-5x-7
2/Tìm x
a/x(x-2)-x+2=0
b/x2(x2+1)-x2-1=0
c/5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
d/(x+2)(3-4x)=x2+4x+4
3/
a/Sắp xếp các đa thức theo lũy thừa giảm dần của biến rồi làm tính chia:
(4x2-5x+x3-20):(x+4)
b/Tìm số a để đa thức x3-3x2+5x+a chia hết cho đa thức x-3
Bài 2.
a) x(x-2)-x+2=0
<=> x2-2x-x+2=0
<=> x2-3x+2=0
<=> x2-x-2x-2=0
<=> x(x-1)-2(x-1)=0
<=> (x-1)(x-2)=0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
b) x2(x2+1)-x2-1=0
<=> x4+x2-x2-1=0
<=> x4-1=0
<=> x4=1
<=> x=\(\pm\)1
(2x^3-5x^2+6x-15):(2x-5)
chia đa thức một biến đã sắp xếp
giúp mik vs nhé
\(=\left[x^2\left(2x-5\right)+3\left(2x-5\right)\right]:\left(2x-5\right)\\ =x^2+3\)
\(\left(2x^3-5x^2+6x-15\right):\left(2x-5\right)\\ =\left[x^2\left(2x-5\right)+3\left(2x-5\right)\right]:\left(2x-5\right)\\ =\left[\left(2x-5\right)\left(x^2+3\right)\right]:\left(2x+5\right)=x^2+3\)