Cho tỉ lệ thức \(\frac{a+b}{b+c}\)= \(\frac{c+d}{d+a}\), với a,b,c,d >0. So sánh a và c
a) Cho tỉ lệ thức\(\frac{6}{{10}} = \frac{9}{{15}}\). So sánh hai tỉ số \(\frac{{6 + 9}}{{10 + 15}}\) và \(\frac{{6 - 9}}{{10 - 15}}\) với các tỉ số trong tỉ lệ thức đã cho.
b) Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\) với \(b + d \ne 0;b - d \ne 0\)
Gọi giá trị trung của các tỉ số đó là k, tức là: \(k = \frac{a}{b} = \frac{c}{d}\)
- Tính a theo b và k, tính c theo d và k.
- Tính tỉ số \(\frac{{a + c}}{{b + d}}\) và \(\frac{{a - c}}{{b - d}}\) theo k.
- So sánh mỗi tỉ số \(\frac{{a + c}}{{b + d}}\) và \(\frac{{a - c}}{{b - d}}\) với các tỉ số \(\frac{a}{b}\) và \(\frac{c}{d}\)
a) Ta có:
\(\begin{array}{l}\frac{6}{{10}} = \frac{{6:2}}{{10:2}} = \frac{3}{5};\\\frac{9}{{15}} = \frac{{9:3}}{{15:3}} = \frac{3}{5}\end{array}\)
\(\begin{array}{l}\frac{{6 + 9}}{{10 + 15}} = \frac{{15}}{{25}} = \frac{{15:5}}{{25:5}} = \frac{3}{5};\\\frac{{6 - 9}}{{10 - 15}} = \frac{{ - 3}}{{ - 5}} = \frac{3}{5}\end{array}\)
Ta được: \(\frac{{6 + 9}}{{10 + 15}} = \frac{{6 - 9}}{{10 - 15}} = \frac{6}{{10}} = \frac{9}{{15}}\)
b) - Vì \(k = \frac{a}{b} \Rightarrow a = k.b\)
Vì \(k = \frac{c}{d} \Rightarrow c = k.d\)
- Ta có:
\(\begin{array}{l}\frac{{a + c}}{{b + d}} = \frac{{k.b + k.d}}{{b + d}} = \frac{{k.(b + d)}}{{b + d}} = k;\\\frac{{a - c}}{{b - d}} = \frac{{k.b - k.d}}{{b - d}} = \frac{{k.(b - d)}}{{b - d}} = k\end{array}\)
- Như vậy, \(\frac{{a + c}}{{b + d}}\) =\(\frac{{a - c}}{{b - d}}\) = \(\frac{a}{b}\) =\(\frac{c}{d}\)( = k)
a: \(\dfrac{6+9}{10+15}=\dfrac{15}{25}=\dfrac{3}{5};\dfrac{6-9}{10-15}=\dfrac{-3}{-5}=\dfrac{3}{5}\)
=>Bằng nhau
b: a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k;\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)
=>\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a}{b}=\dfrac{c}{d}\)
Cho tỉ lệ thức (a+b)/(b+c)=(c+d)/(d+a), với a,b,c,d>0. So sánh a và c
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)với a,b,c,d khác 0,a khác b , c khác d . CMR \(\frac{a}{a-b}=\frac{c}{c-d}\)
Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)trong đó b khác 0 . CMR c = 0
MAI MÌNH NỘP RỒI GIÚP MÌNH VỚI
Bài 1:
Cho tỉ lệ thức \(\frac{x}{4}=\frac{y}{7}\)và xy=112. Tìm x và y.
Bài 2:
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)(với b + d khác 0) ta suy ra được \(\frac{a}{b}=\frac{a+c}{b+d}\)
Bài 3:
Cho a,b,c,d khác 0. Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)hãy suy ra tỉ lệ thức \(\frac{a-b}{a}=\frac{c-d}{c}\)
Giúp mk vs mk sẽ tick cho nha!
Bài 1: Ta có: \(\frac{x}{4}=\frac{y}{7}\Rightarrow7x=4y\) (1)
=> 7xy=4yy
=> 7.112=4.y2
=> y2=784:4
=> y2=196.
Mà vì 196= 14.14 => y=14 (2)
TỪ (1) và (2) => 14.4=x.7
=> x=56:7=8
Vậy x=8;y=14
Cho tỉ lệ thức (a+b)/(b+c)=(c+d)/(d+a), với a,b,c,d khác 0. So sánh a và c
a) Cho tỉ lệ thức \(\frac{6}{{10}} = \frac{{ - 9}}{{ - 15}}\). So sánh tích hai số hạng 6 và -15 với tích hai số hạng 10 và -9
b) Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\). Nhân hai vế của tỉ lệ thức với tích bd, ta được đẳng thức nào?
a) Ta có: 6. (-15) = -90;
10.(-9) = = - 90
Vậy tích hai số hạng 6 và -15 bằng tích hai số hạng 10 và -9
b) Nhân hai vế của tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\) với tích bd, ta được: \(\frac{{a.b.d}}{b} = \frac{{c.b.d}}{d} \Rightarrow ad = bc\)
Vậy ta được đẳng thức ad = bc
a) 6.(-15) = 10.(-9) = -90
b) a/b . bd = ad
c/d . bd = bc
Ta được ad = bc
1. Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) (với b+d \(\ne\) 0) ta suy ra được \(\frac{a}{b}=\frac{a+c}{b+d}\)
2. Cho a,b,c,d \(\ne\) 0 . Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) hãy suy ra tỉ lệ thức \(\frac{a-b}{a}=\frac{c-d}{c}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
1)\(VT=\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)
\(VP=\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)
Từ (1) và (2) ->Đpcm
2)\(VT=\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\left(1\right)\)
\(VP=\frac{c-d}{c}=\frac{dk-d}{dk}=\frac{d\left(k-1\right)}{dk}=\frac{k-1}{k}\left(2\right)\)
Từ (1) và (2) ->Đpcm
Hướng dẫn cách làm nè!
Đầu tiên làm ra nháp:
Xuất phát từ đầu bài: \(\frac{a}{b}\)=\(\frac{a+c}{b+d}\)
=> a.( b+d ) = b.( a+c ) {tích chéo}
=>ab+ad = ab+bc {phân phối}
=>ad = bc {rút gọn cùng chia cho ab}
=>\(\frac{a}{b}\)= \(\frac{c}{d}\) {tính chất của tlt}
_Đó là phần nháp, còn trình bày bạn chỉ cần chép từ dưới lên:
\(\frac{a}{b}\)=\(\frac{c}{d}\)
=> ad=bc
=> ab+ad=ab+bc
=> a.( b+d )= b. (a+c)
=> \(\frac{a}{b}\) = \(\frac{a+c}{b+d}\)
1/ Cho tỉ lệ thức \(\frac{x}{4}\)= \(\frac{y}{7}\)và xy = 112 . tĩm và y
2/ Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}\)= \(\frac{c}{d}\)(với b + d khác 0 ) ta suy ra được \(\frac{a}{b}\)= \(\frac{a+c}{b+d}\)
3/ Cho a , b , c , d khác 0 . Từ tỉ lệ thức \(\frac{a}{b}\)= \(\frac{c}{d}\)hãy suy ra được tỉ lệ thức \(\frac{a-b}{a}\)= \(\frac{c-d}{c}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\), b; c khác 0. Chứng tỏ rằng a khác b, c khác d thì ta có các tỉ lệ thức sau:
\(\frac{a}{a+b}=\frac{c}{c+d};\frac{a}{a-b}=\frac{c}{c-d};\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
nhớ là cm từng tỉ lệ thức nha