Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê thị thơm
Xem chi tiết
Ngô Hải Nam
4 tháng 8 2023 lúc 20:38

\(\sqrt{4\dfrac{1}{2}}+\sqrt{32}-\sqrt{72}+\sqrt{162}\\ =\sqrt{\dfrac{4\cdot2+1}{2}}+\sqrt{4^2\cdot2}-\sqrt{6^2\cdot2}+\sqrt{9^2\cdot2}\\ =\sqrt{\dfrac{9}{2}}+4\sqrt{2}-6\sqrt{2}+9\sqrt{2}\\ =\dfrac{3}{\sqrt{2}}+7\sqrt{2}\\ =\dfrac{3}{\sqrt{2}}+\dfrac{7\sqrt{2}\cdot\sqrt{2}}{\sqrt{2}}\\ =\dfrac{17}{\sqrt{2}}\)

Nguyễn Lê Phước Thịnh
4 tháng 8 2023 lúc 20:36

\(=\sqrt{\dfrac{9}{2}}+4\sqrt{2}-6\sqrt{2}+9\sqrt{2}\)

\(=\dfrac{3}{2}\sqrt{2}+7\sqrt{2}=\dfrac{17}{2}\sqrt{2}\)

Võ Việt Hoàng
4 tháng 8 2023 lúc 20:46

\(\sqrt{4\dfrac{1}{2}}+\sqrt{32}-\sqrt{72}+\sqrt{162}\)

\(=\sqrt{\dfrac{9}{2}}+\sqrt{4^2.2}-\sqrt{6^2.2}+\sqrt{9^2.2}\)

\(=\dfrac{3}{\sqrt{2}}+4\sqrt{2}-6\sqrt{2}+9\sqrt{2}\)

\(=\dfrac{3\sqrt{2}}{2}+7\sqrt{2}=\dfrac{3\sqrt{2}+14\sqrt{2}}{2}=\dfrac{17\sqrt{2}}{2}\)

chang
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 14:10

6: Ta có: \(\left(3\sqrt{2}-\sqrt{3}\right)\left(3\sqrt{2}+\sqrt{3}\right)\)

=18-3

=15

7: Ta có: \(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}-\sqrt{162}\)

\(=6\sqrt{2}+\dfrac{3}{2}\sqrt{2}-4\sqrt{2}-9\sqrt{2}\)

\(=-\dfrac{11}{2}\sqrt{2}\)

dswat monkey
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2022 lúc 6:54

a: \(A=\left(1-\sqrt{7}\right)\cdot\left(1+\sqrt{7}\right)=1-7=-6\)

b: \(B=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}=-4\sqrt{3}\)

c: \(C=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)

Kashima Tokiro
Xem chi tiết
Mới vô
11 tháng 9 2018 lúc 17:13

\(\sqrt{2\cdot36}+\sqrt{2\cdot\dfrac{9}{4}}-\sqrt{2\cdot16}-\sqrt{2\cdot81}=6\sqrt{2}+\dfrac{3}{2}\sqrt{2}-4\sqrt{2}-9\sqrt{2}=\dfrac{-11}{2}\sqrt{2}\)

Hoàng Linh
Xem chi tiết
Hoàng Linh
2 tháng 10 2018 lúc 16:21

\sqrt{72}\+ \sqrt{4+1/2}\ - \sqrt{32}\ -\sqrt{162}\

hello hello
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 9 2022 lúc 23:27

a: \(=10\sqrt{2}-4\sqrt{2}+6\sqrt{2}=12\sqrt{2}\)

b: \(=5\sqrt{7}-4\sqrt{7}+3\sqrt{7}=4\sqrt{7}\)

c: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{6}=\dfrac{1}{6}\sqrt{6}\)

d: \(=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)

e: \(=\sqrt{5}+\dfrac{2}{5}\sqrt{5}+\sqrt{5}=2.4\sqrt{5}\)

f: \(=\dfrac{1}{5}\sqrt{5}+\dfrac{3}{2}\sqrt{2}+\dfrac{5}{2}\sqrt{2}=\dfrac{1}{5}\sqrt{5}+4\sqrt{2}\)

Lê Trang Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 5 2022 lúc 20:09

3: \(\sqrt{12-3\sqrt{7}}-\sqrt{12-3\sqrt{7}}=0\)

4: \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)

\(=-2\sqrt{2}\)

6: \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)

\(=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}\)

\(=-4\sqrt{3}\)

manh
Xem chi tiết
HT.Phong (9A5)
12 tháng 8 2023 lúc 15:13

a) \(\sqrt{200}-\sqrt{32}+\sqrt{72}\)

\(=\sqrt{10^2\cdot2}-\sqrt{4^2\cdot2}+\sqrt{6^2\cdot2}\)

\(=10\sqrt{2}-4\sqrt{2}+6\sqrt{2}\)

\(=\left(10-4+6\right)\sqrt{2}\)

\(=12\sqrt{2}\)

b) \(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}\)

\(=4\cdot2\sqrt{5}-3\cdot5\sqrt{5}+5\cdot3\sqrt{5}-3\sqrt{5}\)

\(=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}\)

\(=\left(8-15+15-3\right)\sqrt{5}\)

\(=5\sqrt{5}\)

c) \(\left(2\sqrt{8}+3\sqrt{5}-7\sqrt{2}\right)\left(72-5\sqrt{20}-2\sqrt{2}\right)\)

\(=\left(2\cdot2\sqrt{2}+3\sqrt{5}-7\sqrt{2}\right)\left(72-5\cdot2\sqrt{5}-2\sqrt{2}\right)\)

\(=\left(3\sqrt{5}-3\sqrt{2}\right)\left(72-10\sqrt{5}-2\sqrt{2}\right)\)

Nguyễn Lê Phước Thịnh
12 tháng 8 2023 lúc 15:05

loading...  

Bla bla bla
Xem chi tiết
Nguyễn Đức Trí
16 tháng 9 2023 lúc 13:33

\(A=\dfrac{\sqrt[4]{7\sqrt[3]{54}+15\sqrt[3]{128}}}{\sqrt[3]{\sqrt[4]{32}}+\sqrt[3]{9\sqrt[4]{162}}}\)

\(\Leftrightarrow A=\dfrac{\sqrt[4]{7\sqrt[3]{3^3.2}+15\sqrt[3]{4^3.2}}}{\sqrt[3]{\sqrt[4]{2^4.2}}+\sqrt[3]{9\sqrt[4]{3^4.2}}}\)

\(\Leftrightarrow A=\dfrac{\sqrt[4]{7.3\sqrt[3]{2}+15.4\sqrt[3]{2}}}{\sqrt[3]{2\sqrt[4]{2}}+\sqrt[3]{9.3\sqrt[4]{2}}}\)

\(\Leftrightarrow A=\dfrac{\sqrt[4]{21\sqrt[3]{2}+60\sqrt[3]{2}}}{\sqrt[3]{2\sqrt[4]{2}}+\sqrt[3]{3^3\sqrt[4]{2}}}\)

\(\Leftrightarrow A=\dfrac{\sqrt[4]{81\sqrt[3]{2}}}{\sqrt[3]{\sqrt[4]{2}}\left(\sqrt[3]{2}+3\right)}=\dfrac{3\sqrt[4]{\sqrt[3]{2}}}{\sqrt[3]{\sqrt[4]{2}}\left(\sqrt[3]{2}+3\right)}\)

\(\Leftrightarrow A=\dfrac{3}{\sqrt[3]{2}+3}\)