Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Vũ Tuấn Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 12 2018 lúc 17:24

Chọn C.

Gọi G là trọng tâm tam giác ABC và E là điểm thỏa mãn  E A   →   + 2 E B   → - E C → = 0

(điểm E như thế luôn tồn tại duy nhất). Khi đó đẳng thức trên tương đương với 3 M G → = M E →  hay 3 M G = M E . Trên đường thẳng GE ta lấy 2 điểm P, Q thỏa mãn 3 P G = P E = 3 Q G = Q E . Khi đó quỹ tích điểm M thỏa mãn yêu cầu là đường tròn đường kính PQ.

Phan Quỳnh Như
Xem chi tiết
Nguyễn Ngọc Anh Minh
8 tháng 12 2021 lúc 14:53

(MA+MB)(MC-MB)=0 => MC-MB=0 => MB=MC

=> tg MBC cân tại M 

Từ M dựng đường thẳng d vuông góc với BC => d là đường cao của tg cân MBC => d đồng thời là đường trung trực

=> Tập hợp các điểm M thoả mãn đk đề bài là đường thẳng d là đường trung trực của BC

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 1 2018 lúc 16:42

Gọi I là trung điểm BC  ⇒ M B → + M C → = 2 M I → .

Ta có M A → M B → + M C → = 0 ⇔ M A → .2 M I → = 0 ⇔ M A → . M I → = 0 ⇔ M A → ⊥ M I → . *  

Biểu thức (*) chứng tỏ M A ⊥ M I  hay M nhìn đoạn AI dưới một góc vuông nên tập hợp các điểm M là đường tròn đường kính AI.

Chọn D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 6 2018 lúc 8:03

Đáp án D

Nguyễn Minh Quân
Xem chi tiết
Ngọc Hưng
20 tháng 9 2023 lúc 15:44

\(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MA}-\overrightarrow{MC}=-\overrightarrow{MB}\Leftrightarrow\overrightarrow{CA}=\overrightarrow{BM}\)

Vậy M là điểm sao cho tứ giác ACBM là hình bình hành.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 9 2018 lúc 5:47

Thanh Trần
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 12 2022 lúc 0:41

38.

Gọi I là trung điểm AB và G là trọng tâm tam giác ABC

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\\\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\end{matrix}\right.\)

\(3\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\)

\(\Leftrightarrow3.\left|2\overrightarrow{MI}\right|=3\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)

\(\Leftrightarrow6\left|\overrightarrow{MI}\right|=2.\left|3\overrightarrow{MG}\right|\)

\(\Leftrightarrow6\left|\overrightarrow{MI}\right|=6\left|\overrightarrow{MG}\right|\)

\(\Leftrightarrow\left|\overrightarrow{MI}\right|=\left|\overrightarrow{MG}\right|\)

\(\Leftrightarrow MI=MG\)

\(\Rightarrow\) Tập hợp M là đường trung trực của đoạn thẳng IG

Thục Quyên
Xem chi tiết