Cho tam giác ABC. Tìm tập hợp các điểm M thỏa mãn điều kiện (MA + MB) (MC - MB) = 0
Cho tam giác ABC. Tập hợp các điểm M thỏa mãn M A → M B → + M C → = 0 là:
A. một điểm.
B. đường thẳng.
C. đoạn thẳng.
D. đường tròn.
Cho tam giác ABC. Tập hợp các điểm M thỏa mãn M A → M B → + M C → = 0 là
A. Một điểm
B. Một tia
C. Một đường thẳng
D. Một đường tròn
Cho tam giác ABC. Tìm tập hợp tất cả điểm M thỏa mãn điều kiện \(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{0}\)
Cho tam giác ABC
a) Xác định điểm D thỏa mãn vecto DA +3. vecto DB=0
b) Tìm tập hợp điểm M thỏa mãn: |MA+MB|=|MA+MC| câu b đều là vecto hết nha mn
Cho tam giác ABC và điểm M thỏa mãn
\(\left|\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}-3\overrightarrow{MC}\right|\)
Tìm Tập hợp điểm M?
cho tam giác ABC tìm tập hợp các điểm M thỏa mãn \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Cho tam giác ABC. Tập hợp các điểm M thỏa mãn M B → - M C → = B M → - B A → là?
A. đường thẳng AB
B. trung trực đoạn BC
C. đường tròn tâm A; bán kính BC
D. đường thẳng qua A và song song với BC
Cho tam giác ABC có trọng tâm G . Gọi I là trung điểm CG và M,N là các điểm thỏa mãn vectơ MN = vectơ MA + vectơ MB + 4 vectơ MC . Chứng minh rằng 3 điểm M, I , N thẳng hàng.