y x 1/2x3/4+y:8/5-y/2=1/2
bài 1:
a) (2x3 - x2 + 5x) : x b) (3x4 - 2x3 + x2) : (-2x) c) (-2x5 + 3x2 - 4x3) : 2x2
d) (x3 - 2x2y + 3xy2) : \(\left(-\dfrac{1}{2}x\right)\) e) [ 3(x-y)5 - 2(x-y)4 + 3(x-y)2] : 5(x-y)2
a) (3x5 y2 +4x3y3-5x2y4 ) :2x2y2
a) \(\left(2x^3-x^2+5x\right):x\)
\(=\dfrac{2x^3-x^2+5x}{x}\)
\(=\dfrac{x\left(2x^2-x+5\right)}{x}\)
\(=2x^2-x+5\)
b) \(\left(3x^4-2x^3+x^2\right):\left(-2x\right)\)
\(=\dfrac{3x^4-2x^3+x^2}{-2x}\)
\(=\dfrac{2x\left(\dfrac{3}{2}x^3-x^2+\dfrac{1}{2}x\right)}{-2x}\)
\(=-\left(\dfrac{3}{2}x^3-x^2+\dfrac{1}{2}x\right)\)
\(=-\dfrac{3}{2}x^3+x^2-\dfrac{1}{2}x\)
c) \(\left(-2x^5+3x^2-4x^3\right):2x^2\)
\(=\dfrac{-2x^5+3x^2-4x^3}{2x^2}\)
\(=\dfrac{2x^2\left(-x^3+\dfrac{3}{2}-2x\right)}{2x^2}\)
\(=-x^3-2x+\dfrac{3}{2}\)
d) \(\left(x^3-2x^2y+3xy^2\right):\left(-\dfrac{1}{2}x\right)\)
\(=\dfrac{x^3-2x^2y+3xy^2}{-\dfrac{1}{2}x}\)
\(=\dfrac{\dfrac{1}{2}x\left(2x^2-4xy+6y^2\right)}{-\dfrac{1}{2}x}\)
\(=-\left(2x^2-4xy+6y^2\right)\)
\(=-2x^2+4xy-6y^2\)
e) \(\left[3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2\right]:5\left(x-y\right)^2\)
\(=\dfrac{3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2}{5\left(x-y\right)^2}\)
\(=\dfrac{5\left(x-y\right)^2\left[\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\right]}{5\left(x-y\right)^2}\)
\(=\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\)
f) \(\left(3x^5y^2+4x^3y^3-5x^2y^4\right):2x^2y^2\)
\(=\dfrac{3x^5y^2+4x^3y^3-5x^2y^4}{2x^2y^2}\)
\(=\dfrac{2x^2y^2\left(\dfrac{3}{2}x^3+2xy-\dfrac{5}{2}y^2\right)}{2x^2y^2}\)
\(=\dfrac{3}{2}x^3+2xy-\dfrac{5}{2}y^2\)
1. (x3 – 3x2 + x – 3) : (x – 3) 2. (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3) 3. (x – y – z)5 : (x – y – z)3 4. (x2 + 2x + x2 – 4) : (x + 2) 5. (2x3 + 5x2 – 2x + 3) : (2x2 – x + 1) 6. (2x3 – 5x2 + 6x – 15) : (2x – 5)
1: \(=x^2+1\)
3: \(=\left(x-y-z\right)^2\)
A,(2/1x2+2/2x3+2/3x4+...+2/18x19+2/19x20)-x=2/5
B, (1/21-1/30)x140+1,08:[0,2x(y-1)]=11
C, (x+1)+(x+5)+(x+9)+...+(x+29)=136
D, (y+2)+(y+4)+(y+6)+.....+(y+1996)=998000
Cứu với ạ
Làm tính chia
1) (x3 – 3x2 + x – 3) : (x – 3) 2) (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3)
3) (x – y – z)5 : (x – y – z)3 4) (x2 + 2x + x2 – 4) : (x + 2)
5) (2x3 + 5x2 – 2x + 3) : (2x2 – x + 1) | 6) (2x3 – 5x2 + 6x – 15):(2x – 5) |
Bài 3: 1) Thu gọn và tìm bậc đa thức N = 2x3 y 2 + x3 y - 6 x2 y - x 3 y 2 + 6 x2 y + 3x3 y
2) Thu gọn và xác định bậc đa thức M = 4 5 x 3 y 5 – 0,7xy + 2 5 x 3 y 5 – xy + 1 4 x 3 y 5
3) Thu gọn và tính giá trị đa thức tại x = -1, y = 1
Đề lỗi rồi kìa, bạn viết lại đi tridung
x4-y4
x2-3y2
9(x-y)2-4(x+y)2
(4x2-4x+1)-(x+1)2
x3+27
27x3-0.001
125x3-1
\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(x^2-3y^2=\left(x-\sqrt{3}y\right)\left(x+\sqrt{3}y\right)\)
\(9\left(x-y\right)^2-4\left(x+y\right)^2=\left[3\left(x-y\right)\right]^2-\left[2\left(x+y\right)\right]^2=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]=\left(3x-3y-2x+2y\right)\left(3x-3y+2x+2y\right)=\left(x-y\right)\left(5x-y\right)\)
\(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)
\(27x^3-0,001=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\)
\(125x^3-1=\left(5x-1\right)\left(25x^2+5x+1\right)\)
a: \(x^4-y^4=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
c: \(9\left(x-y\right)^2-4\left(x+y\right)^2=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)=\left(x-5y\right)\left(5x-y\right)\)
d: \(\left(4x^2-4x+1\right)-\left(x+1\right)^2=\left(2x-1\right)^2-\left(x+1\right)^2\)
\(=\left(2x-1-x-1\right)\left(2x-1+x+1\right)\)
\(=3x\left(x-2\right)\)
e: \(x^3+27=\left(x+3\right)\left(x^2+3x+9\right)\)
1) Tính nhanh
a) 12,5 x 32 x 8
b) 20,9 + 20,9 x 99
c) 1/1x2 + 1/2x3 + 1/3x4 +.......1/49x50
2) Tìm y biết
a) 45 - 5 x (y + 1) = 10
b) y : 2 + y : 2 = 15
1.
c. \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
2.
a. \(45-5\left(y+1\right)=10\)
\(\Rightarrow5\left(y+1\right)=35\)
\(\Rightarrow y+1=7\)
\(\Rightarrow y=6\)
b. \(y:2+y:2=15\)
\(\Rightarrow\frac{1}{2}y+\frac{1}{2}y=15\)
\(\Rightarrow y=15\)
Bài 1 :
\(a,12,5\times32\times8\)
\(=\left(12,5\times8\right)\times32\)
\(=100\times32\)
\(=3200\)
\(b,20,9+20,9\times99\)
\(=20,9\times\left(1+99\right)\)
\(=20,9\times100\)
\(=2090\)
\(c,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{50}{50}-\frac{1}{50}\)
\(=\frac{49}{50}\)
Bài 2 :
\(a,45-5\times\left(y+1\right)=10\)
\(5\times\left(y+1\right)=45-10\)
\(5\times\left(y+1\right)=35\)
\(y+1=35\div5\)
\(y+1=7\)
\(y=7-1\)
\(y=6\)
\(b,y\div2+y\div2=15\)
\(y\times\frac{1}{2}+y\times\frac{1}{2}=15\)
\(2\times\left(y\times\frac{1}{2}\right)=15\)
\(y=15\)
Học tốt
a) -(x-y)(x2+xy-1)
b) x2(x-1)-(x2+1)(x-y)
c) (3x-2)(2x-1)+(-5x-1)(3x+2)
d) (3x-5)(2x+11)-(2x3)(3x+7)
Bài 2: Tính giá trị biểu thức
C=x(x2-y)-x2(x+y)+y(x2-x) tại x=1/2, y=-1
a)-(x-y)(x2+xy-1)=-(x3+x2y-x-x2y-xy2+y)
=-(x3-xy2-x+y)
=-x3+xy2+x-y
b)x2(x-1)-(x3+1)(x-y)=x3-x2-x3+x2y-x+y
=-x2+x2y-x+y
c)(3x-2)(2x-1)+(-5x-1)(3x+2)=6x2-3x-4x+2-15x2-10x-3x-2
=-9x2-20x
d) hình như bạn ghi lỗi
Bài 2: C=x(x2-y)-x2(x+y)+y(x2-x)
=x3-xy-x3-x2y+x2y-xy
=-2xy
Thay x=1/2,y=-1 vào C, ta có:
C=-2.1/2.(-1)=1
Vậy C=1 khi x=1/2 và y=-1.
a) x2(x – 2x3) b) (x2 + 1)(5 – x)
c) (2x – 1)(3x + 2)(3 – x) d) (x – 2)(x – x2 + 4)
e) ( x2 – 2xy + y2).(x – y) f) (x2 – 1)(x2 + 2x)
yêu câu nhân hay phân tích đa thức thành nhân tử ạ
a: \(=x^3-2x^5\)
b: \(=5x^2-x^3+5-x\)
e: \(=\left(x-y\right)^3=x^3-3x^2y+3xy^2-y^3\)
thực hiện phép nhân các đa thức