Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ánh Cutephomaique

x4-y4
x2-3y2
9(x-y)2-4(x+y)2
(4x2-4x+1)-(x+1)2
x3+27
27x3-0.001
125x3-1


 

ILoveMath
27 tháng 8 2021 lúc 17:02

\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(x^2-3y^2=\left(x-\sqrt{3}y\right)\left(x+\sqrt{3}y\right)\)

\(9\left(x-y\right)^2-4\left(x+y\right)^2=\left[3\left(x-y\right)\right]^2-\left[2\left(x+y\right)\right]^2=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]=\left(3x-3y-2x+2y\right)\left(3x-3y+2x+2y\right)=\left(x-y\right)\left(5x-y\right)\)

\(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)

\(27x^3-0,001=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\)

\(125x^3-1=\left(5x-1\right)\left(25x^2+5x+1\right)\)

Nguyễn Lê Phước Thịnh
27 tháng 8 2021 lúc 23:05

a: \(x^4-y^4=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

c: \(9\left(x-y\right)^2-4\left(x+y\right)^2=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)=\left(x-5y\right)\left(5x-y\right)\)

d: \(\left(4x^2-4x+1\right)-\left(x+1\right)^2=\left(2x-1\right)^2-\left(x+1\right)^2\)

\(=\left(2x-1-x-1\right)\left(2x-1+x+1\right)\)

\(=3x\left(x-2\right)\)

e: \(x^3+27=\left(x+3\right)\left(x^2+3x+9\right)\)


Các câu hỏi tương tự
Kwalla
Xem chi tiết
Tom Jerry
Xem chi tiết
Chau Minh
Xem chi tiết
Kwalla
Xem chi tiết
Ha My
Xem chi tiết
Lmao Lmao
Xem chi tiết
Trung Art
Xem chi tiết
Tiên Võ
Xem chi tiết
Đặng Sara
Xem chi tiết