Cho tg ABC có AC<AB.Tia phân giác góc A cắt BC tại M. So sánh góc AMB với AMC
Tick cho
cho tg abc vuông tại a có góc b=60 độ.trên bc lấy d sao cho ba=bd.tia p.giác của góc b cắt ac tại i
a.cm tg bad đều
b.cm tg ibc cân
c. cm d là t.điểm bc
d.cho ab=6cm.tính bc,ac
Cho tg ABC vuông tại A có AB=9, BC=15,đường cao AH. Đường phân giác của gốc B của tg ABC cắt AH tại E
a)Tính AC, từ đó tính diện tích tg ABC
b) Chứng minh tg HAB đồng dạng với tg HCA
c) Tính AE
đ) Gọi M là trung điểm của AH, N là trung điểm của BH. Chứng minh tg ABN đồng dạng với tg CAM
a,Áp dụng định lý Py ta go vào tam giác vuông ABC có :
AB^2+AC^2=BC^2
=> AC^2=BC^2 - AB^2
=> AC^2=15^2-9^2=144
=> AC = 12
Diện tích tam giác ABC là: 9.12/2=54
Tam giác ABH và tam giácAHC có
Góc BAH=góc ACH(=90- góc HAC)
ABH = HAC ( = 90 - BAH )
=> hai tam giac đồng dạng ( g.g )
c, chiều dai AH là: 54.2:15=7.2 Chiều dài AE là 2/3 . 7.2 = 4.8
cho tam giác ABC có 3 gọc nhọn có 3 đường cao AM, BN, CM. a/ CM: tg ANL đồng dạng tg ABC b) CM: AN.BL.CM= AB.BC.CA.cosA.cosB.cosC
Cho tg ABC vuông tại góc A có góc B bằng 60 độ. Tia phân giác của góc B cắt AC ở D. Kẻ CK vgóc với BD ở K.CM BC=2AB
cho tg ABC vuông ở A. trên tia đối của tia AC lấy điểm D sao cho AD=AC. a)CM tg ABC=tg ABD. b)trên tia đối của tia AB, lấy điểm M. CM tg MBD=tg MBC
a) Ta có : Tam giác ABC vuông ở góc A (gt)
=>Góc BAC = 90o
Ta có : Góc BAD+góc BAC=180o
=>Góc BAD=90o
Xét tam giác ABC và tam giác ABD , có :
AC=AD (gt)
Góc BAC=Góc BAD (=90o)
AB là cạnh chung
=> Tam giác ABC = Tam giác ABD (c.g.c)
b) Vì tam giác ABC = tam giác ABD (cmt)
=>DB=BC (2 cạnh tương ứng)
=>Góc DBA= Góc CBA (2 góc tương ứng )
Xét tam giác MBD và tam giác MBC, có:
AM là cạnh chung
Góc DBM= Góc CBM (cmt)
DB=DC (cmt)
=>Tam giác MBD = Tam giác MBC (c.g.c)
a: Xét ΔABC vuông tại A và ΔABD vuông tại A có
BA chung
CA=DA
Do đó: ΔABC=ΔABD
b: Xét ΔMAD vuông tại A và ΔMAC vuông tại A có
AM chung
AD=AC
Do đó: ΔMAD=ΔMAC
Suy ra: MD=MC
Xét ΔMBD và ΔMBC có
MB chung
MD=MC
BD=BC
Do đó: ΔMBD=ΔMBC
CHo tam giác(tg) ABC có AB = AC. Tia phân giác góc A cắt BC tại D
a) CM: tg ABD = tg ACD
b) trên nửa mặt phẳng bờ BC chứa điểm A vẽ tia Cx vuông góc với BC. Trên nửa mặt phẳng vờ AB chứa điểm C vẽ tia Ay//BC. CM : góc yAC = góc ABC
c) CM: AD// Cx
d) Gọi I là trung điểm của AC, K là giao điểm của 2 tia Ay và Cx. CM: I là trung điểm của DK
a) Ta có AB = AC => ABC là tg cân ( cân tại A)
Xét \(\Delta ABD\)Và \(\Delta ACD\)
\(\widehat{ACD}=\widehat{ABD}\)( TAM GIÁC CÂN )
\(AC=AB\)
AD LÀ CẠNH CHUNG
=> 2 tam giác = nhau ( c.g.c )
b) Ta có Ay//BC
=> \(\widehat{yAC}=\widehat{ACB}\)( SO LE TRONG )
Mà \(\widehat{ACB}=\widehat{ABC}\)
=> \(\widehat{yAC}=\widehat{ABC}\)
c) Ta có tg ABC cân
=> AD là đg phân giác cũng là đường cao
=> \(AD\perp BC\)
MÀ \(Cx\perp BC\)
=> AD//Cx
d) Ta có Ay ( AK) //BC
Mà \(\widehat{ADC}=90^O\)
=> \(DA\perp Ay\)
Tứ giác AKCD là hình chữ nhâtk
mà theo tính chất của hình chữ nhật ( 2 đường chéo cắt nhau tại trung điểm của mỗi đường )
=> I là trung điểm của DK
Cho tg ABC có góc A nhọn. Kẻ đường cao BK,CH.
a) CM: góc ABK=góc ACH
b) Trên tia đối của tia BK với CH lll E, F sao cho BE=AC, CF=AB. C/m .
c) Chứng minh tam giác AEF vuông cân.
a: Xét ΔABK vuông tại K và ΔACH vuông tại H có
\(\widehat{HAC}\) chung
Do đó: ΔABK\(\sim\)ΔACH
Suy ra: \(\widehat{ABK}=\widehat{ACH}\)
cho tam giác ABC, góc A=90, đường cao AH, AC=30cm, AH=24cm.
a) chứng minh tg ABC đồng dạng tg HAC
b) tính độ dài đoạn thảng HC,BC,AB
c) kẻ HM vuông góc vs AB (M thuộc AB), HN vg góc vs AC(N thuộc AC). Chứng minh tg AMN đồng dạng tg ACB
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACH}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
b) Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=AC^2-AH^2=30^2-24^2=324\)
hay HC=18(cm)
Ta có: ΔABC∼ΔHAC(cmt)
nên \(\dfrac{AB}{HA}=\dfrac{BC}{AC}=\dfrac{AC}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AB}{24}=\dfrac{BC}{30}=\dfrac{30}{18}=\dfrac{5}{3}\)
Suy ra: \(\left\{{}\begin{matrix}\dfrac{AB}{24}=\dfrac{5}{3}\\\dfrac{BC}{30}=\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=40\left(cm\right)\\BC=50\left(cm\right)\end{matrix}\right.\)
Vậy: HC=18cm; AB=40cm; BC=50cm
c) Xét ΔAHM vuông tại M và ΔABH vuông tại H có
\(\widehat{HAM}\) chung
Do đó: ΔAHM\(\sim\)ΔABH(g-g)
Suy ra: \(\dfrac{AH}{AB}=\dfrac{AM}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=AM\cdot AB\)(1)
Xét ΔAHN vuông tại N và ΔACH vuông tại H có
\(\widehat{NAH}\) chung
Do đó: ΔAHN\(\sim\)ΔACH(g-g)
Suy ra: \(\dfrac{AH}{AC}=\dfrac{AN}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=AN\cdot AC\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
hay \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)(cmt)
Do đó: ΔAMN\(\sim\)ΔACB(c-g-c)
Cho tam giác ABC có AB<AC, AD là tia phân giác của góc BAC. Trên cạnh AC lấy E sao cho EA=EB. cmr
a) t.giác ABD= tg AED
b) AD v.góc BE
c) góc ADB < góc ADC