a) Ta có : Tam giác ABC vuông ở góc A (gt)
=>Góc BAC = 90o
Ta có : Góc BAD+góc BAC=180o
=>Góc BAD=90o
Xét tam giác ABC và tam giác ABD , có :
AC=AD (gt)
Góc BAC=Góc BAD (=90o)
AB là cạnh chung
=> Tam giác ABC = Tam giác ABD (c.g.c)
b) Vì tam giác ABC = tam giác ABD (cmt)
=>DB=BC (2 cạnh tương ứng)
=>Góc DBA= Góc CBA (2 góc tương ứng )
Xét tam giác MBD và tam giác MBC, có:
AM là cạnh chung
Góc DBM= Góc CBM (cmt)
DB=DC (cmt)
=>Tam giác MBD = Tam giác MBC (c.g.c)
a: Xét ΔABC vuông tại A và ΔABD vuông tại A có
BA chung
CA=DA
Do đó: ΔABC=ΔABD
b: Xét ΔMAD vuông tại A và ΔMAC vuông tại A có
AM chung
AD=AC
Do đó: ΔMAD=ΔMAC
Suy ra: MD=MC
Xét ΔMBD và ΔMBC có
MB chung
MD=MC
BD=BC
Do đó: ΔMBD=ΔMBC