Tính : a+2=2a+1
Tìm a
Cho a>=0, b>=0, c>=0, a+b+c=1
Tìm GTLN của M=\(\sqrt{2a^2+3a+4}+\sqrt{2b^2+3b+4}+\sqrt{2c^2+3c+4}\)
\(\left\{{}\begin{matrix}a;b;c\ge0\\a+b+c=1\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le1\)
\(\Rightarrow a\left(a-1\right)\le0\Rightarrow a^2\le a\)
\(\Rightarrow\sqrt{2a^2+3a+4}=\sqrt{a^2+a^2+3a+4}\le\sqrt{a^2+a+3a+4}=a+2\)
Tương tự và cộng lại:
\(\Rightarrow M\le a+2+b+2+c+2=7\)
\(M_{max}=7\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị
Cho A=x4+3x3-x2+(2a-b)x+3b+a
B=x2+3x-1
Tìm a; b để A chia hết cho B
1Tìm x,y biết
(x + 5).(x-y) = 72
Tìm x thuộc Z biết
2a + 27:a+1
bộ bạn tự nghĩ ra đề hả, ko có điều kiện của x,y thì làm sao tìm được
câu b thì ko có kết quả, tìm kiểu gì
a)Cho x-y=2,xy=1
Tìm giá trị biểu thức A = x2+y2.
b)Cho x+y=1 . Tính giá trị của biểu thức A = x3 + 3xy + y3.
\(a,A=x^2+y^2\\=x^2-2xy+y^2+2xy\\=(x-y)^2+2xy\\=2^2+2\cdot1\\=4+2\\=6\)
\(b,x+y=1\\\Leftrightarrow (x+y)^3=1^3\\\Leftrightarrow x^3+3x^2y+3xy^2+y^3=1\\\Leftrightarrow x^3+3xy(x+y)+y^3=1\\\Leftrightarrow x^3+3xy\cdot1+y^3=1\\\Rightarrow A=1\)
a) Ta có:
\(x-y=2\)
\(\Rightarrow\left(x-y\right)^2=2^2\)
\(\Rightarrow x^2-2xy+y^2=4\)
Mà: \(xy=1\)
\(\Rightarrow\left(x^2+y^2\right)-2\cdot1=4\)
\(\Rightarrow x^2+y^2=4+2\)
\(\Rightarrow x^2+y^2=6\)
b) Ta có:
\(x+y=1\)
\(\Rightarrow\left(x+y\right)^3=1^3\)
\(\Rightarrow x^3+3x^2y+3xy+y^3=1\)
\(\Rightarrow x^3+3xy\left(x+y\right)+y^3=1\)
Mà: x + y = 1
\(\Rightarrow x^3+3xy\cdot1+y^3=1\)
\(\Rightarrow x^3+3xy+y^3=1\)
Bài 1tìm GTLN
A=-(2x-5)^2+6|2x-5|+4
B=-x^2-y^2+2x-6y+9
Bài 2
Cho x-y=2, tính giá trị A= 2(x^3-y^3)-3(x+y)^2
Bài 1:
a) \(A=-\left(2x-5\right)^2+6\left|2x-5\right|+4=-\left[\left(2x-5\right)^2-6\left|2x-5\right|+9\right]+13=-\left(\left|2x-5\right|-3\right)^2+13\le13\)
\(maxA=13\Leftrightarrow\) \(\left[{}\begin{matrix}2x-5=3\\2x-5=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)
b) \(B=-x^2-y^2+2x-6y+9=-\left(x^2-2x+1\right)-\left(y^2+6y+9\right)+19=-\left(x-1\right)^2-\left(y+3\right)^2+19\le19\)
\(maxC=19\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
Bài 2:
\(A=2\left(x^3-y^3\right)-3\left(x+y\right)^2=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=4\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)
bài 2
\(A=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(A=2.2\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(A=\left(4x^2+4xy+4y^2\right)+\left(-3x^2-6xy-3y^2\right)\)
\(A=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)
2^a-5^b x 7^c = 1
tìm a ; b; c
cho a,b là các số thực dương a+b<=1
tìm GTNN: 1/(a^2+b^2)+1/2ab
\(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\ge\dfrac{4}{a^2+2ab+b^2}=\dfrac{4}{\left(a+b\right)^2}=4\)
dấu"=" xảy ra<=>\(a=b=\dfrac{1}{2}\)
Cho a+b=1
Tìm GTNN của \(A=a\left(a^2+2b\right)+b\left(b^2-a\right)\)
Cứu mình với !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(A=a\left(a^2+2b\right)+b\left(b^2-a\right)\)
\(=a^3+b^3+ab\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)
\(=a^2-ab+b^2+ab\)
\(=a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}=\dfrac{1}{2}\)
Dấu "=" xảy ra khi a=b=1/2.
Vậy MinA=1/2.
(bất đẳng thức \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) thì bạn tự c/m nhé)
Cho a,b>0 t/m a+b \(\le\) 1
Tìm GTNN \(\dfrac{1}{a^2+b^2}+\dfrac{2}{ab}+4ab\)
Áp dụng BĐT BSC và Cosi:
\(\dfrac{1}{a^2+b^2}+\dfrac{2}{ab}+4ab=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{4ab}+4ab+\dfrac{5}{4ab}\)
\(\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{1}{4ab}.4ab}+\dfrac{5}{\left(a+b\right)^2}\)
\(=\dfrac{4}{\left(a+b\right)^2}+2+\dfrac{5}{\left(a+b\right)^2}\ge4+2+5=11\)
\(min=11\Leftrightarrow a=b=\dfrac{1}{2}\)
A =\(\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\) với ≥0,x≠1
tìm GTNN của A
$\large A=\frac{2\sqrt{x}-1}{\sqrt{x}+1}=2-\frac{3}{\sqrt{x}+1}$
Ta có: $\large \sqrt{x}+1\ge1\Leftrightarrow -\frac{3}{\sqrt{x}+1}\ge-3$
Do đó: $\large A \ge 2-3=-1$
Vậy $A_{min}=-1$
Dấu $"="$ xảy ra khi $x=0$