Bài 4: (0,5 điểm)
Cho tổng A = 20 + 21 + 22 + 23 + 24 + 25 + .... + 2100
Tính A
Cho tổng A = 20 + 21 + 22 + 23 + 24 + 25 + . . . + 2100
Tìm số dư của phép chia tổng A cho 3.
Mk cần giúp đỡ
Cho A= 1*2*3*4*...........*20*21*22*23*24*25
Hỏi tổng 6 chữ số cuối cùng của A bằng bao nhiêu
Tổng 6 chữ số cuối cùng của A là 0
đúng 100%
tk mk nha bạn
cẩm ơn
chúc bạn học tốt
Bài 5 (0,5 điểm): Tính A = 20 + 21 + 22 + 23 + .... + 219.
số số hạng là :[219-20]:1+1=200[số]
mà biết 20+[219+21]+[218+22]+[217+23]+...
= 20+240+240+240+...
vậy có 100 số 240
=[240 x 100]+20
=24020
bài 1:
a. S2 = 21+23+25+...+1001
b. S4 = 15+25+35+..+115
bài 2:
a. 2x-138= 23 .32
b. 5.(x+35) = 515
c. 814- ( x-305)=712
d. 20 - [ 7(x-3) +4] =2
e. 9x-1 =9
e. 5x-2 -32 = 24 - (28. 22 - 210 . 22)
Bài 1
S₂ = 21 + 23 + 25 + ... + 1001
Số số hạng của S₂:
(1001 - 21) : 2 + 1 = 491
⇒ S₂ = (1001 + 21) . 491 : 2 = 250901
--------
S₄ = 15 + 25 + 35 + ... + 115
Số số hạng của S₄:
(115 - 15) : 10 + 1 = 11
⇒ S₄ = (115 + 15) . 11 : 2 = 715
Bài 2
a) 2x - 138 = 2³.3²
2x - 138 = 8.9
2x - 138 = 72
2x = 72 + 138
2x = 210
x = 210 : 2
x = 105
b) 5.(x + 35) = 515
x + 35 = 515 : 5
x + 35 = 103
x = 103 - 35
x = 78
c) 814 - (x - 305) = 712
x - 305 = 814 - 712
x - 305 = 102
x = 102 + 305
x = 407
d) 20 - [7.(x - 3) + 4] = 2
7(x - 3) + 4 = 20 - 2
7(x - 3) + 4 = 18
7(x - 3) = 18 - 4
7(x - 3) = 14
x - 3 = 14 : 7
x - 3 = 2
x = 2 + 3
x = 5
e) 9ˣ⁻¹ = 9
x - 1 = 1
x = 1 + 1
x = 2
2:
a: \(2x-138=2^3\cdot3^2\)
=>\(2x-138=8\cdot9=72\)
=>2x=138+72=210
=>x=105
b: \(5\cdot\left(x+35\right)=515\)
=>x+35=103
=>x=103-35=68
c: \(814-\left(x-305\right)=712\)
=>x-305=814-712=102
=>x=102+305=407
d: \(20-\left[7\left(x-3\right)+4\right]=2\)
=>7(x-3)+4=18
=>7(x-3)=14
=>x-3=2
=>x=5
e: \(9^{x-1}=9\)
=>x-1=1
=>x=2
f: \(5^{x-2}-3^2=2^4-\left(2^8\cdot2^2-2^{10}\cdot2^2\right)\)
=>\(5^{x-2}-9=16-1024+4096\)
=>\(5^{x-2}=3097\)
=>\(x-2=log_53097\)
=>\(x=2+log_53097\)
Cho A= 20+21+22+23+24+25 +26 .........+ 299 CMR: A chia hết cho 31
`A=2^{0}+2^{1}+2^{2}+....+2^{99}`
`=(1+2+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8}+2^{9})+......+(2^{95}+2^{96}+2^{97}+2^{97}+2^{99})`
`=(1+2+2^{2}+2^{3}+2^{4})+2^{5}(1+2+2^{2}+2^{3}+2^{4})+.....+2^{95}(1+2+2^{2}+2^{3}+2^{4})`
`=31+2^{5}.31+....+2^{95}.31`
`=31(1+2^{5}+....+2^{95})\vdots 31`
\(A=2^0+2^1+2^2+2^3+2^4+2^5+2^6+...+2^{99}\)
\(=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)
Cho A = 20 + 21 + 22 + 23 + 24 + 25 … + 299 . Chứng minh A chia hết cho 31
A = 20 + 21 + 22 + 23 + 24 + 25 … + 299
A=( 20 + 21 + 22 + 23 + 24) +( 25 … + 299)
A= 20.(20 + 21 + 22 + 23 + 24)+25.( 25 … + 299)
A= 1. 31+ 25.31… + 295.31
A= 31. (1+25...+295)
KL: ......
\(A=2^0+2^1+2^2+2^3+2^4+...+2^{99}=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)
A = 20 + 21 + 22 + 23 + 24 + 25 … + 299
A=( 20 + 21 + 22 + 23 + 24) +( 25 … + 299)
A= 20.(20 + 21 + 22 + 23 + 24)+25.( 25 … + 299)
A= 1. 31+ 25.31… + 295.31
A= 31. (1+25...+295)
KL: ......
Bài 5 (0,5 điểm): Cho A = 20 + 21 + 22 + 23 + .... + 219 . Và B = 220. Và B = 220. Chứng minh rằng A và B là hai số tự nhiên liên tiếp.
\(2A=2^1+2^2+...+2^{20}\)
\(\Leftrightarrow2A-A=2^1+2^2+...+2^{20}-2^0-...-2^{19}\)
\(\Leftrightarrow A=2^{20}-1\)
Vậy: A và B là hai số tự nhiên liên tiếp
\(A=1+2+2^2+...+2^{19}\)
\(2A=2+2^2+2^3+...+2^{20}\)
\(2A-A=\left(2+2^2+2^3+...+2^{20}\right)-\left(1+2+2^2+...+2^{19}\right)=2^{20}-1\)
\(A=B-1\).
-Vậy A và B là 2 số tự nhiên liên tiếp.
A= 20+21+22+23+...+219
2A=21+22+23+24+...+220
A=(21+22+23+24+...+220)-(20+21+22+23+...+219)
A=220-20
A=220-1
Vì B=220 mà A=220-1 nên A và B là 2 số liền nhau
So sánh: 20\21; 21\22; 22\23; 23\24; 24\25
20<21
21<22
22<23
23<24
24<25
cho A= 1*2*3*4*.....*20*21*22*23*23*25. Hỏi tổng của 6 chữ số cuối cùng của A là bao nhiêu?