Bài 1
S₂ = 21 + 23 + 25 + ... + 1001
Số số hạng của S₂:
(1001 - 21) : 2 + 1 = 491
⇒ S₂ = (1001 + 21) . 491 : 2 = 250901
--------
S₄ = 15 + 25 + 35 + ... + 115
Số số hạng của S₄:
(115 - 15) : 10 + 1 = 11
⇒ S₄ = (115 + 15) . 11 : 2 = 715
Bài 2
a) 2x - 138 = 2³.3²
2x - 138 = 8.9
2x - 138 = 72
2x = 72 + 138
2x = 210
x = 210 : 2
x = 105
b) 5.(x + 35) = 515
x + 35 = 515 : 5
x + 35 = 103
x = 103 - 35
x = 78
c) 814 - (x - 305) = 712
x - 305 = 814 - 712
x - 305 = 102
x = 102 + 305
x = 407
d) 20 - [7.(x - 3) + 4] = 2
7(x - 3) + 4 = 20 - 2
7(x - 3) + 4 = 18
7(x - 3) = 18 - 4
7(x - 3) = 14
x - 3 = 14 : 7
x - 3 = 2
x = 2 + 3
x = 5
e) 9ˣ⁻¹ = 9
x - 1 = 1
x = 1 + 1
x = 2
2:
a: \(2x-138=2^3\cdot3^2\)
=>\(2x-138=8\cdot9=72\)
=>2x=138+72=210
=>x=105
b: \(5\cdot\left(x+35\right)=515\)
=>x+35=103
=>x=103-35=68
c: \(814-\left(x-305\right)=712\)
=>x-305=814-712=102
=>x=102+305=407
d: \(20-\left[7\left(x-3\right)+4\right]=2\)
=>7(x-3)+4=18
=>7(x-3)=14
=>x-3=2
=>x=5
e: \(9^{x-1}=9\)
=>x-1=1
=>x=2
f: \(5^{x-2}-3^2=2^4-\left(2^8\cdot2^2-2^{10}\cdot2^2\right)\)
=>\(5^{x-2}-9=16-1024+4096\)
=>\(5^{x-2}=3097\)
=>\(x-2=log_53097\)
=>\(x=2+log_53097\)