Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khùng Điên
Xem chi tiết
Khùng Điên
29 tháng 7 2017 lúc 10:41

phynit thay giup em voi ah

Khùng Điên
29 tháng 7 2017 lúc 10:41
Toshiro Kiyoshi34GP Trần Đăng Nhất32GP Nguyễn Huy Tú30GP Hồng Phúc Nguyễn24GP Akai Haruma21GP nguyen van tuan19GP T.Thùy Ninh19GP Xuân Tuấn Trịnh11GP Nguyen Ngoc Anh Linh10GP Nguyen Bao Linh9GP
Nguyễn Thảo Nguyên
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 1 2021 lúc 15:10

\(u_1+u_4=u_2+u_3\) , mà \(u_1+u_2+u_3+u_4=20\)

\(\Rightarrow u_1+u_4=u_2+u_3=10\)

\(\Rightarrow2u_1+3d=10\)

\(\dfrac{u_1+u_4}{u_1u_4}+\dfrac{u_2+u_3}{u_2u_3}=\dfrac{25}{24}\Leftrightarrow10\left(\dfrac{1}{u_1u_4}+\dfrac{1}{u_2u_3}\right)=\dfrac{25}{24}\)

\(\Leftrightarrow\dfrac{1}{u_1\left(u_1+3d\right)}+\dfrac{1}{\left(u_1+d\right)\left(u_1+2d\right)}=\dfrac{5}{48}\)

\(\Leftrightarrow\dfrac{1}{u_1\left(10-u_1\right)}+\dfrac{9}{\left(10+u_1\right)\left(20-u_1\right)}=\dfrac{5}{48}\)

\(\Leftrightarrow\dfrac{5\left(u_1-8\right)\left(u_1-2\right)\left(u_1^2-10u_1-120\right)}{48u_1\left(u_1-20\right)\left(u_1^2-10\right)}=0\)

Nhiều nghiệm quá

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 5 2023 lúc 22:11

=>2u1+u1+q+u1+2q=-1 và u1*(u1+3q)=1

=>4u1+3q=-1 và u1(u1+3q)=1

=>3q=-1-4u1 và u1(u1-1-4u1)=1

=>-3u1^2-u1-1=0 và 3q=1-4u1

=>ko có u1,q của cấp số cộng này

UYÊN
Xem chi tiết
Akai Haruma
25 tháng 10 2023 lúc 0:09

Lời giải:
Gọi $q$ là công bội thì $u_2=u_1q; u_3=u_1q^2$.

Theo bài ra ta có:

$24=u_1+u_2+u_3=u_1+u_1q+u_1q^2=u_1(1+q+q^2)(1)$

$364=u_1^2+u_2^2+u_3^2=u_1^2+(u_1q)^2+(u_1q^2)^2$

$=u_1^2(1+q^2+q^4)(2)$

Từ $(1); (2)\Rightarrow \frac{u_1^2(1+q+q^2)^2}{u_1^2(1+q^2+q^4)}=\frac{24^2}{364}$

$\Leftrightarrow \frac{(1+q+q^2)^2}{1+q^2+q^4}=\frac{144}{91}(*)$

Đặt $q=a; q^2+1=b$ thì:

$(*)\Leftrightarrow \frac{(a+b)^2}{b^2-a^2}=\frac{144}{91}$
$\Rightarrow 91(a+b)^2=144(b^2-a^2)$
$\Leftrightarrow (a+b)(235a-53b)=0$

$\Rightarrow a+b=0$ hoặc $235a-53b=0$

Hiển nhiên $a+b=q^2+q+1>0$ nên $235a-53b=0$

$\Leftrightarrow 53(q^2+1)-235q=0$

Đến đây thì ơơn giản rồi.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 9 2018 lúc 2:40

Chọn A.

Phương pháp: 

Sử dụng công thức tính tổng của n số hạng đầu của cấp số nhân có số hạng đầu tiên là 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 11 2019 lúc 14:26

Chọn A

Phương pháp: 

Sử dụng công thức tính tổng của n số hạng đầu của cấp số nhân có số hạng đầu tiên

là u 1  và công bội q là S n = u 1 ( 1 - q n ) 1 - q

Cách giải:

S n = u 1 ( 1 - q n ) 1 - q ⇔ S n = u 1 ( q n - 1 ) q - 1

phương mai
Xem chi tiết
meme
8 tháng 9 2023 lúc 13:12

Để tìm U1 và q, ta sử dụng hệ phương trình sau:

U1 + U6 = 165U3 + U4 = 60

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U3: U3 = 60 - U4

Sau đó, thay giá trị của U3 vào phương trình thứ nhất: U1 + U6 = 165 U1 + (U3 + 3q) = 165 U1 + (60 - U4 + 3q) = 165 U1 - U4 + 3q = 105 (1)

Tiếp theo, ta sử dụng phương trình thứ nhất để tìm U6: U6 = 165 - U1

Thay giá trị của U6 vào phương trình thứ hai: U3 + U4 = 60 (60 - U4) + U4 = 60 60 = 60 (2)

Từ phương trình (2), ta thấy rằng phương trình không chứa U4, do đó không thể giải ra giá trị của U4. Vì vậy, không thể tìm được giá trị cụ thể của U1 và q chỉ từ hai phương trình đã cho.

Để tìm số hạng đầu và công bội của cấp số nhân, ta sử dụng các phương trình đã cho:

a. U4 - U2 = 72 U5 - U3 = 144

Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U4: U4 = U2 + 72

Sau đó, thay giá trị của U4 vào phương trình thứ hai: U5 - U3 = 144 (U2 + 2q) - U3 = 144 U2 - U3 + 2q = 144 (3)

Từ phương trình (3), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.

b. U1 - U3 + U5 = 65 U1 + U7 = 325

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U7: U7 = 325 - U1

Sau đó, thay giá trị của U7 vào phương trình thứ nhất: U1 - U3 + U5 = 65 U1 - U3 + (U1 + 6q) = 65 2U1 - U3 + 6q = 65 (4)

Từ phương trình (4), ta thấy rằng phương trình không chứa U3, do đó không thể giải ra giá trị của U1 và q chỉ từ hai phương trình đã cho.

c. U3 + U5 = 90 U2 - U6 = 240

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U6: U6 = U2 - 240

Sau đó, thay giá trị của U6 vào phương trình thứ nhất: U3 + U5 = 90 U3 + (U2 - 240 + 4q) = 90 U3 + U2 - 240 + 4q = 90 U3 + U2 + 4q = 330 (5)

Từ phương trình (5), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.

d. U1 + U2 + U3 = 14 U1 * U2 * U3 = 64

Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U3: U3 = 14 - U1 - U2

Sau đó, thay giá trị của U3 vào phương trình thứ hai: U1 * U2 * (14 - U1 - U2) = 64

Phương trình này có dạng bậc ba và không thể giải ra giá trị cụ thể của U1 và U2 chỉ từ hai phương trình đã cho.

Tóm lại, không thể tìm được giá trị cụ thể của số hạng đầu và công bội của cấp số nhân chỉ từ các phương trình đã cho.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 8 2017 lúc 16:55

Đáp án C

Hoàng Đức Long
Xem chi tiết
Vũ Thành Nam
22 tháng 8 2017 lúc 16:50

Chọn A

U= U 1 2 + ( U 2 - U 3 ) 2  = U ' 1 2 + ( U ' 2 - U ' 3 ) 2  = 100 2 V

Suy ra:  U ' 2 - U ' 3 2 = U 2 - U ' 1 2 = 13600

                U 2 - U 3 = I Z L - Z C  = 100(V) (*)

             U ' 2 - U ' 3  = I Z L - Z C   = 13600  (V) (**) (R thay đổi không ảnh hưởng đến ZL và ZC)

Từ (*) và (**) suy ra :

I ' I = 13600 100 ⇒ U ' 2 U 2 = I ' Z L I Z L = 13600 100

=> U2 = 13600 100 U2 = 233,2 V