2n+5 chia hết cho n+2
tìm số nguyên n sao cho :
1,n^2+2n-4 chia hết cho 11
2,2n^3+n^2+7n+1 chia hết cho 2n -1
3,n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
o l m . v n
4,n^3-2 chia hết cho n-2
5, n^3-3n^2-3n-1 chia hết cho n^2+n+1
6, 5^n-2^n chia hết cho 63
tìm n bt n e N
a) 2n + 1 chia hết cho 6 - n
b) 2n + 7 chia hết cho n + 1
c) 3n chia hết cho 5 - 2n
d) 4n + 3 chia hết cho 2n - 6
e) 2n + 5 chia hết cho n - 5
g) n + 5 chia hết cho 2 - 2n
h) n2 - n + 13 chia hết cho n + 3
k) n2 - n + 11 chia hết n - 1
các bạn làm giúp mk nhé!!!! ai lm đúng thì mk sẽ tick!!! mk cảm ơn mn trước nhé!!!! ^.^
. .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
Tìm n thuộc Z để:
a) (2n^2-n+2) chia hết cho (2n+1)
b) (2n^2+n-7) chia hết cho (n-2)
c) (10n^2-7n-5) chia hết cho (2n-3)
d) (2n^2+3n+3) chia hết cho (2n-1)
a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)
\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;1;5;-2\right\}\)
d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{1;0;3;-2\right\}\)
Tìm n E N để
a) 2n + 1 chia hết co 6 - n
b) 2n + 2 chia hết cho 2n - 1
c) 4n - 5 chia hết cho 2n - 1
d) n\(^2\)+ 2n + 7 chia hết cho n + 2
e) n^2 + 1 chia hết cho n - 1
f) 3n + 1 chia hết cho 11 - 2n
h) 3n - 6 chia hết cho 2n - 1
2. a) Tìm n thuộc N để n^5+1 chia hết cho n^3+1
b) Tìm n thuộc Z để n^5+1 chia hết cho n^3+1
3. Tìm số nguyên n sao cho:
a) n^2+2n-4 chia hết cho 11
b) 2n^3+n^2+7n+1chia hết cho 2n-1
c) n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
d) n^3-n^2+2n+7 chia hết cho n^2+1
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
2. a) Tìm n thuộc N để n^5+1 chia hết cho n^3+1
b) Tìm n thuộc Z để n^5+1 chia hết cho n^3+1
3. Tìm số nguyên n sao cho:
a) n^2+2n-4 chia hết cho 11
b) 2n^3+n^2+7n+1chia hết cho 2n-1
c) n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
d) n^3-n^2+2n+7 chia hết cho n^2+1
Tìm n thuộc N:
1) 3n + 5 chia hết cho n - 4
2) 6n + 7 chia hết cho 3n - 1
3) 4n + 8 chia hết cho 3n - 2
4) 2n - 7 chia hết cho n + 2
5) 3n - 4 chia hết cho 3 - n
6) 2n - 5 chia hết cho n + 1
7) 3n - 7 chia hết cho 2n + 3
8) n - 5 chia hết cho n - 1
1: =>3n-12+17 chia hết cho n-4
=>\(n-4\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{5;3;21;-13\right\}\)
2: =>6n-2+9 chia hết cho 3n-1
=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)
4: =>2n+4-11 chia hết cho n+2
=>\(n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-1;-3;9;-13\right\}\)
5: =>3n-4 chia hết cho n-3
=>3n-9+5 chia hết cho n-3
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
6: =>2n+2-7 chia hết cho n+1
=>\(n+1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{0;-2;6;-8\right\}\)
Để n+5 chia hết cho n-1 thì n-1 phải thuộc Ư(n+5)
Để 2m+4 chia hết cho n+2 thì n+2 phải thuộc Ư(2n+4)
Để 6n+4 chia hết cho 2n+1 thì 2n+1 phải thuộc Ư(6n+4)
Để 3-2n chia hết cho 2n+1 thì 2n+1 phải thuộc Ư(3-2n)
n chia hết cho n-2
n+7 chia hết cho (n+1)
21 chia hết cho 2n+5
2n+7 chia het cho 2n+1
\(n⋮n-2\\ \Rightarrow n-\left(n-2\right)⋮n-2\\ \Rightarrow2⋮n-2\\ \Rightarrow n-2\in\left\{1;2\right\}\\ \Rightarrow n\in\left\{3;4\right\}\)Vậy \(n\in\left\{3;4\right\}\)
\(n+7⋮n+1\\ \Rightarrow n+7-\left(n+1\right)⋮n+1\\ \Rightarrow6⋮n+1\\ \Rightarrow n+1\in\left\{1;2;3;6\right\}\\ \Rightarrow n\in\left\{0;1;2;5\right\}\)Vậy \(n\in\left\{0;1;2;5\right\}\)
\(21⋮2n+5\\ \Rightarrow2n+5\in\left\{1;3;7;21\right\}\\ \Rightarrow2n\in\left\{2;16\right\}\\ \Rightarrow n\in\left\{1;8\right\}\)Vậy \(n\in\left\{1;8\right\}\)
\(2n+7⋮2n+1\\ \Rightarrow2n+7-\left(2n+1\right)⋮2n+1\\ \Rightarrow6⋮2n+1\\ \Rightarrow2n+1\in\left\{1;2;3;6\right\}\\ \Rightarrow2n\in\left\{0;1;2;5\right\}\\ \Rightarrow n\in\left\{0;1\right\}\)Vậy \(n\in\left\{0;1\right\}\)