Tìm tất cả các giá trị của \(n\in Z\) để \(2n^2-n+7\) chia hết cho \(n-2\)
Tìm tất cả các số n thuộc Z để giá trị của đa thức n+1 chia hết cho giá trị của đa thức 3n^3 -2
khi !n!>1
!n+1!<!3n^3-2! kho the chia het
n=1 duy nhat
a) tìm x nguyên để giá trị của biểu thức 2x2+x-7 chia hết cho giá trị của biểu thức x-2
b) tìm n thuộc Z để giá trị của biểu thức 2n2-n+2 chia hết cho giá trị của biểu thức 2n+1
Giúp mình
Cho A=2n+1/n+2 với n thuộc Z
a)Tìm các giá trị của n để A là phân số
b)Tìm n sao cho A=7/2
c)tìm tất cả giá trị n sao cho A là số nguyên
mng giải cả lời nhé ai xog sơm trc mà có cả lời thì mik tick nhé
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
Cho phân số A= \(\dfrac{2n+3}{4n+1}\) ( \(n\in Z\) )
a) Tìm n để A= \(\dfrac{13}{21}\)
b) Tìm tất cả các giá trị của n để A có giá trị là phân số tối giản
\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)
Tìm tất cả các số nguyên n để 2n²+n-7 chia hết cho n-2
TK
2n^2 + n - 7 | n - 2
- 2n^2 - 4n | 2n + 5
5n - 7
- 5n - 10
3
Để ( 2n^2 + n - 7)chia hết cho(n - 2) thì 3 chia hết cho (n - 2)
<=> (n - 2) ∈ Ư(3)
<=> n - 2 = 3 <=> n = 5
hoặc n - 2 = -3 <=> n = -1
hoặc n - 2 = 1 <=> n = 3
hoặc n - 2 = -1 <=> n = 1
Vậy n ∈ {-1;1;3;5} thì 2n^2 + n - 7 chia hết cho n - 2
tìm tất cả các số nguyên n để 2n^2+n-7 chia hết cho n-2
Tìm tất cả các số nguyên n để 2n^2+n-7 chia hết cho n-2
Lấy 2n2+n-7 chia cho n-2 được kết quả là 2n+5 dư 3
\(n\in Z\Leftrightarrow2n-5\inƯ\left(3\right)=\left\{-1;-3;1;3\right\}\)
2n+5 | -1 | 1 | -3 | 3 |
n | -3 | -2 | -4 | -1 |
Vậy \(n\in\left\{-4;-3;-2;-1\right\}\)
thì 2n2+n-7 chia hết cho n-2
Tìm tất cả các số nguyên n để 2n^2+n-7 chia hết cho n-2
Lấy \(2n^2+n-7\div n-2dư3\)
Để \(2n^2+n-7\) chia hết cho n-2 thì n-2 là Ư(3)
mà Ư(3)là {\(\pm1,\pm3\)
nên ta có các trường hợp sau
n-2 \(=-1\)
\(\Rightarrow\) n bằng 1
tương tự
vậy