Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 1 2019 lúc 9:43

Đáp án: A

Ta có:

(C): x 2  + y 2  - 8x + 10y + 2m - 1 = 0 ⇔ (x - 4 ) 2  + (y + 5 ) 2  = 42 - 2m

Để (C) là phương trình đường tròn thì 42 - 2m > 0 ⇔ m < 21

Nguyễn Lê Phước Thịnh
12 tháng 12 2021 lúc 13:06

=>8x=18-10y

=>x=(18-10y)/8

Oanh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 12 2021 lúc 12:54

Đề bài yêu cầu gì?

lý canh hy
Xem chi tiết
BBBT
Xem chi tiết
HT.Phong (9A5)
24 tháng 9 2023 lúc 17:31

a) \(\sqrt{1-8x+16x^2}=\dfrac{1}{3}\)

\(\Leftrightarrow\sqrt{1^2-2\cdot4x\cdot1+\left(4x\right)^2}=\dfrac{1}{3}\)

\(\Leftrightarrow\sqrt{\left(4x-1\right)^2}=\dfrac{1}{3}\)

\(\Leftrightarrow\left|4x-1\right|=\dfrac{1}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-1=\dfrac{1}{3}\left(ĐK:x\ge\dfrac{1}{4}\right)\\4x-1=\dfrac{1}{3}\left(ĐK:x< \dfrac{1}{4}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{4}{3}\\4x=\dfrac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(tm\right)\\x=\dfrac{1}{6}\left(tm\right)\end{matrix}\right.\)

b) \(\sqrt{16x-32}+\sqrt{25x-50}=18+\sqrt{9x-18}\) (ĐK: \(x\ge2\)

\(\Leftrightarrow\sqrt{16\left(x-2\right)}+\sqrt{25\left(x-2\right)}=18+\sqrt{9\left(x-2\right)}\)

\(\Leftrightarrow4\sqrt{x-2}+5\sqrt{x-2}=18+3\sqrt{x-2}\)

\(\Leftrightarrow6\sqrt{x-2}=18\)

\(\Leftrightarrow\sqrt{x-2}=3\)

\(\Leftrightarrow x-2=9\)

\(\Leftrightarrow x=9+2\)

\(\Leftrightarrow x=11\left(tm\right)\)

Hoàng Thị Quỳnh
Xem chi tiết
trần gia bảo
13 tháng 2 2019 lúc 21:39

Ta có: \(\sqrt{x-3}.1\ge\frac{x-3+1}{2}=\frac{x-2}{2}\)\(\left(1\right)\)

           \(\sqrt{5-x}.1\ge\frac{5-x+1}{2}=\frac{4-x}{2}\)\(\left(2\right)\)

Cộng \(\left(1\right),\left(2\right)\),ta có \(\sqrt{x-3}+\sqrt{5-x}\ge2\)

       Mặt khác: \(x^2-8x+18=\left(x-4\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x=4

Huy vũ quang
Xem chi tiết
Hoàng Lê Bảo Ngọc
2 tháng 9 2016 lúc 8:23

ĐKXĐ : \(3\le x\le5\)

Áp dụng bất đẳng thức Bunhiacopxki vào vế trái : 

\(\left(\sqrt{x-3}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-3+5-x\right)=4\)

\(\Rightarrow\sqrt{x-3}+\sqrt{5-x}\le2\)

Xét vế phải : \(x^2-8x+18=\left(x-4\right)^2+2\ge2\)

Do đó pt tương đương với : \(\begin{cases}\sqrt{x-3}+\sqrt{5-x}=2\\x^2-4x+18=2\end{cases}\) \(\Leftrightarrow x=4\) (tmđk)

Vậy pt có nghiệm x = 4

Trần Thanh Phong
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 9 2018 lúc 4:34

x 3 + x y 2 − 10 y = 0 x 2 + 6 y 2 = 10 < = > x 3 + x y 2 − ( x 2 + 6 y 2 ) y = 0    (1) x 2 + 6 y 2 = 10                        (2)

T phương trình (1) ta có:

x 3 + x y 2 − ( x 2 + 6 y 2 ) y = 0 < = > x 3 + x y 2 − x 2 y − 6 y 3 = 0 < = > x 3 − 2 x 2 y + x 2 y − 2 x y 2 + 3 x y 2 − 6 y 3 = 0 < = > ( x − 2 y ) ( x 2 + x y + 3 y 2 ) = 0 < = > x = 2 y x 2 + x y + 3 y 2 = 0

+ Trường hp 1:  x 2 + x y + 3 y 2 = 0 < = > ( x + y 2 ) 2 + 11 y 2 4 = 0 = > x = y = 0

Với x= y = 0 không thỏa mãn phương trình (2).

+ Trường hp 2: x= 2y thay vào phương trình (2) ta có: 

4 y 2 + 8 y 2 = 12 < = > y 2 = 1 < = > y = 1 = > x = 2 y = − 1 = > x = − 2

Vậy hệ phương trình có 2 nghiệm  ( x ; y ) ∈ { ( 2 ; 1 ) ; ( − 2 ; − 1 ) }