Từ một điểm A ở bên ngoài đường tròn (O) vẽ cát tuyến ABC. Trên nửa mặt phẳng có bờ AO không chứa BC, đặt điểm D sao cho AD2 = AB . AC. Chứng minh: AD là tiếp tuyến của (O).
Cho (O;R) và 1 điểm A nằm ngoài đường tròn. Qua A kẻ các tiếp tuyến AM,AN với (O) (M,N tiếp điểm). Trên nửa mặt phẳng bờ AO chứa N vẽ cát tuyến ABC của (O) sao cho AB < AC, gọi I là trung điểm của BC, MN cắt AC tại K.
a) C/m AMOI là tứ giác nội tiếp.
b) C/m OA vuông góc với MN tại H và AK.AI=AM2
c) AO cắt (O) tại 2 điểm P,Q ( AP < AQ). Gọi D là trung điểm của HQ. Đường thẳng qua H và vuông góc với MD cắt MP tại E. C/m △MHE ∼ △QDM và P là trung điểm của ME.
Giúp mình với ạ, Cảm ơn!
a: ΔOBC cân tại O
mà OI là trung tuyến
nên OI vuông góc BC
góc OIA=góc OMA=90 độ
=>OIMA nội tiếp
b: Xét (O) có
AM,AN là tiếp tuyến
=>AM=AN
mà OM=ON
nên OA là trung trực của MN
=>OA vuông góc MN tại H
Xét ΔAHK vuông tại H và ΔAIO vuông tại I có
góc HAK chung
=>ΔAHK đồng dạng với ΔAIO
=>AH/AI=AK/AO
=>AH*AO=AK*AI
ΔOMA vuông tại M có MH là đường cao
nên AM^2=AH*AO
=>AM^2=AK*AI
Từ điểm A bên ngoài đường tròn (O), vẽ các tiếp tuyến AB,AC đến (O). Vẽ cát tuyến ADE,D nằm giữa A và E, cát tuyến thuộc nửa mặt phẳng bờ AO có chứa B. BC cắt AO ở H.
Chứng Minh:
a) AO vuông góc BC.
b) AD.AE=AH.AO
c) tứ giác DEOH nội tiếp.
Mình đã làm dc câu a,b. Còn câu C mình làm không được, mong các bạn giúp đỡ.
a, Xét tg ABC có:
AB=AC (tính chất tiếp tuyến)
=>tg ABC là tg cân
Mà : góc BAO= góc OAC (t/c tiếp tuyến)
=> AO là tia phân giác
Lại có tg ABC là tg cân => AO cũng là đcao => đpcm
Cho đường tròn (O) . Từ điểm K nằm bên ngoài đường tròn, kẻ hai tiếp tuyến KA, KB tới đường tròn ( .A, B là các tiếp điểm). Trên nửa mặt phẳng bờ KO chứa điểm A, vẽ cát tuyến KCD của đường tròn ( C nằm giữa K và D). Gọi I là trung điểm của CD .
a) Chứng minh bốn điểm K.O,H.B cùng thuộc một đường tròn.
b) Chứng minh HK là giác của góc AHB.
c) Kẻ đường kính AI. Nối IC và ID cắt KO tại M và N. Chứng minh rằng OM = ON .
a: góc OHK+góc OBK=180 độ
=>OHKB nội tiếp
b: góc AHK=góc AOK
góc BHK=góc BOK
mà góc AOK=góc BOK
nên góc AHK=góc BHK
=>HK là phân giác của góc AHB
Cho đường tròn (O) . Từ điểm K nằm bên ngoài đường tròn, kẻ hai tiếp tuyến KA, KB tới đường tròn ( .A, B là các tiếp điểm). Trên nửa mặt phẳng bờ KO chứa điểm A, vẽ cát tuyến KCD của đường tròn ( C nằm giữa K và D). Gọi I là trung điểm của CD .
a) Chứng minh bốn điểm K.O,H.B cùng thuộc một đường tròn.
b) Chứng minh HK là giác của góc AHB.
c) Kẻ đường kính AI. Nối IC và ID cắt KO tại M và N. Chứng minh rằng OM = ON .
Cho nửa đường tròn tâm O đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn vẽ hai tiếp tuyến Ax, By với nửa O .lấy điểm C trên nửa đường tròn, kẻ tiếp tuyến tại C cắt Ax tại E, Cắt By tại F, BC cắt AE tại D.
a) chứng minh AD2 = DB.DC
b) Chứng minh E là trung điểm của AD
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét ΔADB vuông tại A có AC là đường cao
nên \(AD^2=DB\cdot DC\)
b: Xét (O) có
EC là tiếp tuyến
EA là tiếp tuyến
Do đó: EC=EA
=>ΔECA cân tại C
=>góc ECA=góc EAC
\(\Leftrightarrow90^0-\widehat{ECA}=90^0-\widehat{EAC}\)
hay \(\widehat{EDC}=\widehat{ECD}\)
=>ΔECD cân tại E
=>ED=EC
mà EC=EA
nên EA=ED
hay E là trung điểm của AD
bài 8/91
cho đường tròn O . qua điểm A ở ngoài đường tròn ,ta vẽ các tiếp tuyến AB và AC tới đường tròn (B,C là các tiếp điểm ) . vẽ cát tuyến AEF ( E, B cùng thuộc 1 đường nửa mặt phẳng bờ OA) . gọi D là trung điểm của EF
A/chứng minh tứ giác ODBC nội tiếp
B/ vẽ đường kính BK của đường tròn O . gọi M là hình chiếu của C trên BK , AK cắt CM tại I . chứng minh I là trung điểm của CM
C/ tia CM cắt O tại điểm thứ 2 là N , AN cắt đường tròn O tại điểm thứ 2 là J , CJ cắt AB tại Z .
thankkkk
a) Chắc ý bạn là ODBA nội tiếp,chứ ODBC không nội tiếp được
Trong (O) có EF là dây cung không đi qua O có D là trung điểm EF
\(\Rightarrow OD\bot EF\Rightarrow\angle ODA=90\Rightarrow\angle ODA=\angle OBA\Rightarrow ODBA\) nội tiếp
b) KC cắt AB tại G
Vì BK là đường kính \(\Rightarrow\angle BCK=90\Rightarrow\Delta BCG\) vuông tại C
có \(AC=AB\Rightarrow A\) là trung điểm GB
mà \(CM\parallel GB(\bot BK)\) \(\Rightarrow I\) là trung điểm CM (Thales thôi,bạn tự chứng minh nha)
Từ điểm A nằm ngoài (O) kẻ tiếp tuyến AB,AC với (O), vẽ cát tuyến ADE sao cho D và C nằm ở 2 nửa mặt phẳng đối nhau có bờ chứa tia OA. Gọi H là giao điểm của OA và BC. Tia OA cắt (O) tại P và G (G nằm giữa A và P). Vẽ đường kính BK và FM của (O). Tia OA cắt EK tại N. C/m M,N,B thẳng hàng.
Từ điểm A nằm ngoài đường tròn (O). Vẽ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là hai tiếp điểm).
a) Chứng minh tứ giác ABOC nội tiếp được đường tròn.
b) Vẽ cát tuyến ADE của (O) sao cho cát tuyến ADE nằm giữa 2 tia AO, AB; D, E thuộc đường tròn (O) và D nằm giữa A, E. Chứng minh AB 2 =AD.AE .
c) Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H thẳng hàng.
a) Chứng minh tứ giác ABOC nội tiếp được đường tròn.
A B O ^ = 90 0 A C O ^ = 90 0 A B O ^ + A C O ^ = 180 0
=> tứ giác ABOC nội tiếp được đường tròn.
b) Vẽ cát tuyến ADE của (O) sao cho ADE nằm giữa 2 tia AO, AB; D, E Î (O) và D nằm giữa A, E. Chứng minh A B 2 = A D . A E .
Tam giác ADB đồng dạng với tam giác ABE
⇒ A B A E = A D A B ⇔ A B 2 = A D . A E
c) Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H thẳng hàng.
Ta có D H A ^ = E H O ^
nên D H A ^ = E H O ^ = A H F ^ ⇒ A H E ^ + A H F ^ = 180 0 ⇒ 3 điểm E, F, H thẳng hàng.
Có 1 phần câu trả lời ở đây.
Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube
Cho <O,R> và 1 điểm A nằm ngoài đường tròn. Qua A kẻ các tiếp tuyến AM,AN tới <O> .Trên nửa mặt phẳng bờ OA có chứa N vẽ cát tuyến ABC của <O> sao cho AB<AC . Gọi I là trung điểm của BC, MN cắt AC tại K
a, CM tứ giác AMOI nội tiếp
b, CM AO vuông góc với MN tại H và AK.AI=AM2
a) \(\widehat{AMO}=\widehat{AIO}=90^o\) nên \(M\)và \(I\)cùng nhìn \(AO\)dưới góc \(90^o\)nên \(AMOI\)nội tiếp.
b) \(OM=ON\)nên \(O\)thuộc đường trung trực của \(MN\)
\(AM=AN\)nên \(A\)thuộc đường trung trực của \(MN\)
nên \(AO\)là trung trực của \(MN\)nên \(AO\perp MN\).
Tam giác \(AMO\)vuông tại \(M\)đường cao \(MK\)nên
\(AM^2=AK.AO\).