\(\dfrac{2x^3+5}{x^2-x+1}-\dfrac{x^3+4}{x^2-x+1}\)help me :(
1, Tìm x ∈ Z biết
a, \(\dfrac{x-4}{15}\)=\(\dfrac{5}{3}\)
b, \(\dfrac{x}{4}\)=\(\dfrac{18}{x+1}\)
c,2x+3 ⋮ x+4
\sqrt{1} \(\dfrac{help}{me}\)
a) \(\dfrac{x-4}{15}=\dfrac{5}{3}\)
\(\Leftrightarrow x-4=15.\dfrac{5}{3}\)
\(\Leftrightarrow x-4=25\)
\(\Leftrightarrow x=29\) thỏa \(x\inℤ\)
b) \(\dfrac{x}{4}=\dfrac{18}{x+1}\left(x\ne-1\right)\)
\(\Leftrightarrow x\left(x+1\right)=18.4\)
\(\Leftrightarrow x\left(x+1\right)=72\)
vì \(72=8.9=\left(-8\right).\left(-9\right)\)
\(\Leftrightarrow x\in\left\{8;-9\right\}\left(x\inℤ\right)\)
c) \(2x+3⋮x+4\) \(\left(x\ne-4;x\inℤ\right)\)
\(\Leftrightarrow2x+3-2\left(x+4\right)⋮x+4\)
\(\Leftrightarrow2x+3-2x-8⋮x+4\)
\(\Leftrightarrow-5⋮x+4\)
\(\Leftrightarrow x+4\in\left\{-1;1;-5;5\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-9;1\right\}\)
Help me... Giup đk chừng nào hay chừng đó ạ.
Bài 1:a, \(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\)
b, \(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\)
c,\(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\)
d,\(\dfrac{3x+2}{3x-2}-\dfrac{6}{2+3x}=\dfrac{9x^2}{9x^2-4}\)
e,\(\dfrac{3}{5x-1}+\dfrac{2}{3-5x}=\dfrac{4}{\left(1-5x\right)\left(5x-3\right)}\)
f,\(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)
g,\(\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\)
h,\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)
i,\(\dfrac{2x-3}{x+2}-\dfrac{x+2}{x-2}=\dfrac{2}{x^2-4}\)
j,\(\dfrac{x-1}{x^2-4}=\dfrac{3}{2-x}\)
\(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\left(ĐKXĐ:x\ne\pm1\right)\\ \Leftrightarrow\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\ \Rightarrow x^2+x-2x=0\\ \Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\Rightarrow x=1\left(loại\right)\end{matrix}\right.\)
vậy phương trình có tập nghiệm là S={0}.
b)
\(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\left(ĐKXĐ:x\ne\dfrac{3}{2}\right)\)
quy đồng và khử mẫu phương trình trên, ta được:
\(\left(x+2\right)^2+3-2x=x^2+10\\ \Leftrightarrow x^2+4x+4-2x-x^2=10-3\)
\(\Leftrightarrow2x+4=7\Leftrightarrow2x=7-4=3\Rightarrow x=\dfrac{3}{2}\left(loại\right)\)
vậy phương trình đã cho vô nghiệm.
c)\(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\left(ĐKXĐ:x\ne\pm5\right)\)
\(\Leftrightarrow\dfrac{\left(x+5\right)^2}{\left(x-5\right)\left(x+5\right)}-\dfrac{\left(x-5\right)^2}{\left(x+5\right)\left(x-5\right)}=\dfrac{20}{\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow\left(x+5\right)^2-\left(x-5\right)^2=20\)
\(\Leftrightarrow x^2+25x+25-x^2+25x-25=20\\ \Leftrightarrow50x=20\Rightarrow x=\dfrac{2}{5}\)
vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{2}{5}\right\}\)
d)\(\dfrac{3x+2}{3x-2}-\dfrac{6}{2+3x}=\dfrac{9x^2}{9x^2-4}\left(ĐKXĐ:x\ne\pm\dfrac{2}{3}\right)\)
quy đồng và khử mẫu phương trình trên, ta được:
\(\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\\ \Leftrightarrow9x^2+12x+4-18x+12-9x^2=0\\ \Leftrightarrow16-6x=0\Leftrightarrow6x=16\Rightarrow x=\dfrac{16}{6}\)
vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{16}{6}\right\}\)
e)\(\dfrac{3}{5x-1}+\dfrac{2}{3-5x}=\dfrac{4}{\left(1-5x\right)\left(5x-3\right)}\left(ĐKXĐ:x\ne\dfrac{1}{5};\dfrac{3}{5}\right)\)
quy đồng và khử mẫu phương trình trên, ta được:
\(3\left(3-5x\right)+2\left(5x-1\right)=4\\ \Leftrightarrow9-15x+10x-2=4\\ \Leftrightarrow-5x=-3\Rightarrow x=\dfrac{3}{5}\left(loại\right)\)
vậy phương trình đã cho vô nghiệm.
f)
\(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\left(ĐKXĐ:x\ne\pm\dfrac{1}{4}\right)\)
quy đồng và khử mẫu phương trình trên, ta được:
\(-3\left(4x+1\right)=2\left(4x-1\right)-8-6x\\ \Leftrightarrow-12x-3=8x-2-8-6x\\ \Leftrightarrow-14x=-7\Rightarrow x=\dfrac{1}{2}\)
vậy phương trình có tập nghiệm là \(S=\left\{\dfrac{1}{2}\right\}\)
g)
\(\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\left(ĐKXĐ:y\ne\pm2\right)\)
quy đồng và khử mẫu phương trình trên, ta được:
\(\left(y-1\right)\left(y+2\right)-5\left(y-2\right)=12+y^2-4\\ \Leftrightarrow y^2+y-2-5y+10=12+y^2-4\\ \Leftrightarrow-4y+8=8\Leftrightarrow-4y=0\Rightarrow y=0\)
vậy phương trình có tập nghiệm là S={0}
h)
\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\left(ĐKXĐ:x\ne\pm1\right)\)
quy đồng và khử mẫu phương trình trên, ta được:
\(\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow x^2+2x+1-x^2+2x-1=4\\ \Leftrightarrow4x=4\Rightarrow x=1\)
vậy phương trình có tập nghiệm là S={1}.
i)
\(\dfrac{2x-3}{x+2}-\dfrac{x+2}{x-2}=\dfrac{2}{x^2-4}\left(ĐKXĐ:x\ne\pm2\right)\)
quy đồng và khử mẫu phương trình trên, ta được:
\(\left(2x-3\right)\left(x-2\right)-\left(x+2\right)=2\\ \Leftrightarrow2x^2-7x+6-x^2-4x-4=2\\ \Leftrightarrow x^2-11x=0\Rightarrow\left[{}\begin{matrix}x=0\\x-11=0\Rightarrow x=11\end{matrix}\right.\)
vậy phương trình có tập nghiệm là S={0;11}
j)
\(\dfrac{x-1}{x^2-4}=\dfrac{3}{2-x}\left(ĐKXĐ:x\ne\pm2\right)\)
quy đồng và khử mẫu phương trình trên, ta được:
\(x-1=-3\left(x+2\right)\Leftrightarrow x-1=-3x-6\\ \Leftrightarrow4x=5\Rightarrow x=\dfrac{5}{4}\)
vậy phương trình có tập nghiệm là \(S=\left\{\dfrac{5}{4}\right\}\)
B1: Tính:
\(B=\dfrac{4.\left(x+3\right)^2}{\left(3x+5\right)^2-4x^2}-\dfrac{x^2-25}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{\left(4x+15\right)^2-x^2}\)
B2: Xác định a, b, c:
a, \(\dfrac{10x-4}{x^3-4x}=\dfrac{a}{x}+\dfrac{b}{1-2}+\dfrac{c}{n+2}\) với mọi x khác 0, x khác \(\pm2\)
b, \(\dfrac{1}{x^3-1}=\dfrac{a}{x-1}+\dfrac{bx+c}{x^2+x+1}\)
Help me!!!
Bài 1:
\(B=\dfrac{4\left(x+3\right)^2}{\left(3x+5\right)^2-4x^2}-\dfrac{\left(x^2-25\right)}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{\left(4x+15\right)^2-x^2}\)
\(=\dfrac{4\left(x+3\right)^2}{\left(3x+5-2x\right)\left(3x+5+2x\right)}-\dfrac{\left(x-5\right)\left(x+5\right)}{\left(3x-2x-5\right)\left(3x+2x+5\right)}-\dfrac{\left(2x+3-x\right)\left(2x+3+x\right)}{\left(4x+15-x\right)\left(4x+15+x\right)}\)
\(=\dfrac{4\left(x+3\right)^2}{5\left(x+5\right)\left(x+1\right)}-\dfrac{\left(x-5\right)\left(x+5\right)}{5\left(x-5\right)\left(x+1\right)}-\dfrac{3\left(x+3\right)\left(x+1\right)}{15\left(x+5\right)\left(x+3\right)}\)
\(=\dfrac{4\left(x+3\right)^2}{5\left(x+5\right)\left(x+1\right)}-\dfrac{x+5}{5\left(x+1\right)}-\dfrac{x+1}{5\left(x+5\right)}\)
\(=\dfrac{4\left(x+3\right)^2}{5\left(x+5\right)\left(x+1\right)}-\dfrac{\left(x+5\right)^2}{5\left(x+5\right)\left(x+1\right)}-\dfrac{\left(x+1\right)^2}{5\left(x+5\right)\left(x+1\right)}\)
\(=\dfrac{4\left(x^2+6x+9\right)-\left(x^2+10x+25\right)-\left(x^2+2x+1\right)}{5\left(x+5\right)\left(x+1\right)}\)
\(=\dfrac{4x^2+24x+36-x^2-10x-25-x^2-2x-1}{5\left(x+5\right)\left(x+1\right)}\)
\(=\dfrac{2x^2+12x+10}{5\left(x+5\right)\left(x+1\right)}\)
\(=\dfrac{2\left(x^2+6x+5\right)}{5\left(x+5\right)\left(x+1\right)}\)
\(=\dfrac{2\left(x^2+5x+x+5\right)}{5\left(x+5\right)\left(x+1\right)}\)
\(=\dfrac{2\left(x+5\right)\left(x+1\right)}{5\left(x+5\right)\left(x+1\right)}=\dfrac{2}{5}\)
Bài 2.
Sửa đề
a) \(\dfrac{10x-4}{x^3-4x}=\dfrac{a}{x}+\dfrac{b}{x-2}+\dfrac{c}{x+2}\)
Giải
Ta sẽ phân tích vế phải
VP = \(\dfrac{a}{x}+\dfrac{b}{x-2}+\dfrac{c}{x+2}\)
VP = \(\dfrac{a\left(x^2-4\right)+bx\left(x+2\right)+cx\left(x-2\right)}{x\left(x^2-4\right)}\)
VP = \(\dfrac{ax^2-4a+bx^2+2bx+cx^2-2cx}{x\left(x^2-4\right)}\)
VP = \(\dfrac{x^2\left(a+b+c\right)+2x\left(b-c\right)-4a}{x\left(x^2-4\right)}\)
Tương tự , ta cũng sẽ phân tích VT
VT = \(\dfrac{2x.5-4}{x\left(x^2-4\right)}\)
Đồng nhất hai VT và VP , ta có :
\(x^2\left(a+b+c\right)+2x\left(b-c\right)-4a=2.5x-4\)
* a + b + c = 0 => 1 + c + 5 + c = 0 => 2c = - 6 => c = - 3
* b - c = 5 => b = c + 5 => b = - 3 + 5 => b = 2
* a = 1
Vậy , a = 1 ; b = 2 ; c = -3
b) Ta sẽ phân tích VP
VP = \(\dfrac{a}{x-1}+\dfrac{bx+c}{x^2+x+1}\)
VP = \(\dfrac{a\left(x^2+x+1\right)+\left(bx+c\right)\left(x-1\right)}{x^3-1}\)
VP = \(\dfrac{ax^2+ax+a+bx^2-bx+cx-c}{x^3-1}\)
VP = \(\dfrac{x^2\left(a+b\right)+x\left(a-b+c\right)+a-c}{x^3-1}\)
Đồng nhất VP và VT , ta được :
\(x^2\left(a+b\right)+x\left(a-b+c\right)+a-c=1\)
* a + b = 0 => a = - b => b = \(-\dfrac{1}{3}\)
* a - b + c = 0 => a + a + a - 1 = 0 => 3a = 1 => a = \(\dfrac{1}{3}\)
* a - c = 1 => c = a - 1 => c = \(\dfrac{1}{3}\) - 1 = \(-\dfrac{2}{3}\)
Vậy , a = \(\dfrac{1}{3}\) ; b = \(-\dfrac{1}{3}\); c = \(-\dfrac{2}{3}\)
Bài 1 bạn Giang làm rồi thì thôi nhé
Kiểm tra giùm mk câu a bài 2 nha!!! ĐỀ BÀI!!!
Giải các pt sau:
1)\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+1}=\dfrac{3}{2-x}\)
2)\(\dfrac{3x+1}{1-3x}+\dfrac{3+x}{3-x}=2\)
3)\(\dfrac{8x-2}{3}=1+\dfrac{5-2x}{4}\)
4)
\(\dfrac{x}{x+1}-\dfrac{2x+3}{x}=\dfrac{-3}{x+1}-\dfrac{3}{x}\)
5)\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)
6)\(\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
giúp mình với cám ơn
1: Sửa đề: 2/x+2
\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)
=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
=>4x-3=-3x-6
=>7x=-3
=>x=-3/7(nhận)
2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)
=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)
=>-6x^2+6=2(3x^2-10x+3)
=>-6x^2+6=6x^2-20x+6
=>-12x^2+20x=0
=>-4x(3x-5)=0
=>x=5/3(nhận) hoặc x=0(nhận)
3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)
=>x*19/6=35/12
=>x=35/38
1/ \(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
2/ \(\dfrac{5x-2}{5}-2=\dfrac{1-2x}{3}\)
3/ \(\dfrac{x-2}{2}-\dfrac{2}{3}=x-1\)
4/ \(\dfrac{2x-1}{3}+\dfrac{3x-2}{4}=\dfrac{4x-3}{5}\)
5/ \(\dfrac{x-3}{9}-\dfrac{x+2}{6}=\dfrac{x+4}{18}-\dfrac{1}{2}\)
1: Ta có: \(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
\(\Leftrightarrow2x-8+12x=4x-2\)
\(\Leftrightarrow10x=6\)
hay \(x=\dfrac{3}{5}\)
2: Ta có: \(\dfrac{5x-2}{5}-2=\dfrac{1-2x}{3}\)
\(\Leftrightarrow15x-6-30=10-20x\)
\(\Leftrightarrow35x=46\)
hay \(x=\dfrac{46}{35}\)
3: Ta có: \(\dfrac{x-2}{2}-\dfrac{2}{3}=x-1\)
\(\Leftrightarrow3x-6-4=6x-6\)
\(\Leftrightarrow-3x=4\)
hay \(x=-\dfrac{4}{3}\)
1)\(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
\(\Leftrightarrow\dfrac{\left(x-4\right).2}{3.2}+\dfrac{2x.6}{6}=\dfrac{4x-2}{6}\)
\(\Rightarrow2x-8+12x=4x-2\\ \Leftrightarrow10x=6\\ \Leftrightarrow x=\dfrac{3}{5}\)
4: Ta có: \(\dfrac{2x-1}{3}+\dfrac{3x-2}{4}=\dfrac{4x-3}{5}\)
\(\Leftrightarrow40x-20+45x-30=48x-36\)
\(\Leftrightarrow37x=14\)
hay \(x=\dfrac{14}{37}\)
5: Ta có: \(\dfrac{x-3}{9}-\dfrac{x+2}{6}=\dfrac{x+4}{18}-\dfrac{1}{2}\)
\(\Leftrightarrow2x-6-3x-6=x+4-9\)
\(\Leftrightarrow-x-x=-5-12=-17\)
hay \(x=\dfrac{17}{2}\)
Tìm x
a) \(\dfrac{x-1}{5}=\dfrac{1-2x}{3}\) b) \(\dfrac{3-\left|x\right|}{5}=1\dfrac{1}{2}:\dfrac{-6}{5}\)
HELP ME !!!!!!!!!!!!!!!!!!!
a/ \(\dfrac{x-1}{5}=\dfrac{1-2x}{3}\)
\(\Leftrightarrow3\left(x-1\right)=5\left(1-2x\right)\)
\(\Leftrightarrow3x-3=5-10x\)
\(\Leftrightarrow3x+10x=5+3\)
\(\Leftrightarrow13x=8\)
\(\Leftrightarrow x=\dfrac{8}{13}\)
Vậy ...
b/ \(\dfrac{3-\left|x\right|}{5}=1\dfrac{1}{2}:\dfrac{-6}{5}\)
\(\Leftrightarrow\dfrac{3-\left|x\right|}{5}=\dfrac{-5}{4}\)
\(\Leftrightarrow\left(3-\left|x\right|\right)4=5.\left(-5\right)\)
\(\Leftrightarrow\left(3-\left|x\right|\right).4=-25\)
\(\Leftrightarrow3-\left|x\right|=-6,25\)
\(\Leftrightarrow\left|x\right|=-3,25\)
\(\Leftrightarrow x\in\varnothing\)
\(\dfrac{x-1}{5}=\dfrac{1-2x}{3}\Rightarrow3x-3=5-10x\)
Áp dụng tính chất chuyển quế đổi giấu
3x+10x=5+3=8
13x=8
\(\Rightarrow\dfrac{8}{13}\)
b)\(\dfrac{3-|x|}{5}=1\dfrac{1}{2}chia\dfrac{-6}{5}=\dfrac{-5}{4}\)
3-/x/=5chia\(\dfrac{-5}{4}\)=-4
/x/=-4+3=-1
Mà /x/\(\ge0\Rightarrow x\in\varnothing\)
Tick em nha
help me
\(log_2\sqrt{2x^2-2x-3}+log^{x-1}_{\dfrac{1}{2}}=0\)
\(log^{x+4}_2+2log^{x+2}_4=2log^{\dfrac{1}{8}}_{\dfrac{1}{2}}\)
\(log^{4^x+1}_2=log^{2^{2x+3}-6}_2+x\)
(\(\dfrac{3}{6-2x}-\dfrac{3-x}{6+2x}-\dfrac{2x^2}{x^2-9}\))(\(\dfrac{1}{x}-\dfrac{1}{3}\))
CMR:biểu thức không phụ thuộc x
Help me
Tính M = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\)
\(\dfrac{2x^2+5x-1}{x-3}\) : \(\dfrac{x^3-2x+5}{x-3}\): \(\dfrac{2x^2+5x-1}{2}\)
help với xin luôn