Tìm GTLN của P = 3x + 8y với x2 + 4y2 = 100
Tìm GTLN của BT
-x2+2xy-4y2+2x+10y-8
-x2-y2+xy+x+y
1.Tìm GTLN của các biểu thức:
a,A= -x - 4y2 + 6x - 8y + 3
b, B= x4 - 6x3 + 15x2 - 20x - 15
2.Cho các số thực a,b thỏa mãn: 2a2 + \(\dfrac{b^2}{4}\)+\(\dfrac{1}{a^2}\)=4. Tìm GTNN và GTLN của A= ab+2019
giúp mình với ạ, mình cảm ơn
Tìm giá trị nhỏ nhất (Min)
x2 + 4y2 + 2023 - 6x - 8y
=x^2-6x+9+4y^2-8y+4+2010
=(x-3)^2+(2y-2)^2+2010>=2010
Dấu = xảy ra khi x=3 và y=1
cho 2 số dương x,y tm x2 +4y2 = 5. tìm GTLN của x+y
Áp dụng bđt bunhia có:
\(\left(x^2+4y^2\right)\left(1+\dfrac{1}{4}\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow\dfrac{25}{4}\ge\left(x+y\right)^2\)\(\Leftrightarrow x+y\le\dfrac{5}{2}\)
Dấu = xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=4y\\x^2+4y^2=5\end{matrix}\right.\Leftrightarrow\) \(\left\{{}\begin{matrix}16y^2+4y^2=5\\x=4y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
cho x2+4y2+9z2= 3 tìm gtln của S=2x+4y+6z giúp mình chiều nộp ạ
Ta có:
\(3-S=\left(x^2+4y^2+9z^2\right)-\left(2x+4y+6z\right)\)
\(\Leftrightarrow3-S=\left(x^2-2x+1\right)+\left(4y^2-4y+1\right)+\left(9z^2-6z+1\right)-3\)
\(\Leftrightarrow6-S=\left(x-1\right)^2+\left(2y-1\right)^2+\left(3z-1\right)^2\ge0\)
\(\Leftrightarrow S\le6\)
\(S_{max}=6\) khi \(\left\{{}\begin{matrix}x-1=0\\2y-1=0\\3z-1=0\end{matrix}\right.\) \(\Leftrightarrow\left(x;y;z\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)
4. Tìm giá trị lớn nhất của các biểu thức a. A = 5 – 8x – x2 b. B = 5 – x2 + 2x – 4y2 – 4y 5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0 6. Chứng minh rằng: a. x2 + xy + y2 + 1 > 0 với mọi x, y b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z 7. Chứng minh rằng: x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.
Biết x2+4y2+9z2=3 Tìm GTLN của S=2x+4y+6x
Cho x;y ∈ 𝑅 thỏa mãn x2+y2 -xy=4 . Tìm giá trị lớn nhất và nhỏ nhất của C= x2+y2
a) Áp dụng bất đẳng thức Cosi ta có :
\(x^2+1\geq 2x\\ 4y^2+1\geq 4y\\ 9z^2+1\geq 6z\)
Suy ra \(S\leq 6\)
Dấu = xảy ra khi \(x=1;y=\frac{1}{2}; z=\frac{1}{3}\)
Chứng minh:
a. x2 + xy + y2 + 1 > 0 với mọi x, y
b. x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 Với mọi x, y, z
⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0
x^2+4y^2+z^2-2x-6z+8y+15
=x^2+4y^2+z^2-2x-6z+8y+1+1+4+9
=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1
=(x-1)^2+4(y+1)^2+(z-3^)2+1
Ta thấy:(x−1)^2≥0
4(y+1)^2≥0
(z−3)^ 2≥0
{(x−1)^24(y+1)^2(z−3)^2≥0
⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0
⇒(x−1)2+4(y+1)2+(z−3)2+1≥0+1=1>0
\(x^2+xy+y^2+1.=x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2+\dfrac{3}{4}y^2+1.\\ =\left(x+\dfrac{y}{2}\right)^2+\dfrac{3}{4}y^2+1>0\forall x;y\in R.\\ \Rightarrow x^2+xy+y^2+10\forall x;y\in R.\)
x2 + 4y2 + z2 - 2x - 6z + 8y + 14=0
\(x^2+4y^2+z^2-2x-6z+8y+14=0\\\Leftrightarrow (x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)=0\\\Leftrightarrow (x^2-2\cdot x\cdot1+1^2)+[(2y)^2+2\cdot2y\cdot 2+2^2]+(z^2-2\cdot z\cdot3+3^2)=0\\\Leftrightarrow (x-1)^2+(2y+2)^2+(z-3)^2=0\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(2y+2\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\ge0\forall x;y;z\)
Mặt khác: \(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2=0\)
nên ta được:
\(\left\{{}\begin{matrix}x-1=0\\2y+2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\\z=3\end{matrix}\right.\)
Vậy: ...
\(x^2+4y^2+z^2-2x-6z+8y+14=0\)
\(\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)=0\)
\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2=0\) (1)
Do \(\left(x-1\right)^2\ge0;\left(2y+2\right)^2\ge0;\left(z-3\right)^2\ge0\)
\(\left(1\right)\Rightarrow\) \(\left(x-1\right)^2=0;\left(2y+2\right)^2=0;\left(z-3\right)^2=0\)
*) \(\left(x-1\right)^2=0\)
\(x-1=0\)
\(x=1\)
*) \(\left(2y+2\right)^2=0\)
\(2y+2=0\)
\(2y=-2\)
\(y=-1\)
*) \(\left(z-3\right)^2=0\)
\(z-3=0\)
\(z=3\)
Vậy x = 1; y = -1; z = 3
Latex của mình có chút lỗi nên xin phép đánh máy hoàn toàn nhé
x^2+4y^2+z^2-2x-6z+8y+14=0
<=> (x^2-2x+1) +4(y^2+2y+1) +(z^2-6z+9)=0
<=> (x-1)^2+4(y+1)^2+(z-3)^2=0
Do (x-1)^2, (y+1)^2>=0, (z-3)^2>=0
Nên x-1=0, y+1=0, z-3=0
<=> x=1, y=-1, z=3