Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
HT.Phong (9A5)
27 tháng 7 2023 lúc 15:06

\(\sqrt{\dfrac{3x-2}{x^2-2x+4}}=\sqrt{\dfrac{3x-2}{\left(x-2\right)^2}}\) 

Có nghĩa khi:

\(\left\{{}\begin{matrix}\dfrac{3x-2}{\left(x-2\right)^2}\ge0\\\left(x-2\right)^2\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\x\ne2\end{matrix}\right.\)

____________________

\(\sqrt{\dfrac{2x-3}{2x^2+1}}\)

Có nghĩa khi:

\(\dfrac{2x-3}{2x^2+1}\ge0\)

\(\Leftrightarrow2x-3\ge0\)

\(\Leftrightarrow x\ge\dfrac{3}{2}\)

Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 15:05

a: ĐKXĐ: (3x-2)/(x^2-2x+4)>=0

=>3x-2>=0

=>x>=2/3

b: ĐKXĐ: (2x-3)/(2x^2+1)>=0

=>2x-3>=0

=>x>=3/2

Lê Kiều Trinh
Xem chi tiết
Rin•Jinツ
27 tháng 11 2021 lúc 11:21

\(x>\dfrac{3}{2}\)

Lê Kiều Trinh
Xem chi tiết
Lê Kiều Trinh
27 tháng 11 2021 lúc 15:09

giúp mình với ạ :(((

 

Phùng Phạm Quỳnh Trang
Xem chi tiết
Dora
9 tháng 9 2023 lúc 21:35

Biểu thức có nghĩa \(<=>\begin{cases} x^2-4 \ne 0\\x-2 \ge0 \end{cases}\)

      \(<=>\begin{cases} x \ne \pm 2\\x \ge 2\end{cases}\)

       `<=>x > 2`

tueanh2k3
9 tháng 9 2023 lúc 21:13

hmmm....đợi cô nghĩ chút<)

 

Lê Kiều Trinh
Xem chi tiết
An Thy
19 tháng 7 2021 lúc 16:05

a) để căn thức có nghĩa thì \(3x^2+1\ge0\) (luôn đúng) nên căn luôn có nghĩa

b) để căn thức có nghĩa thì \(4x^2-4x+1\ge0\Rightarrow\left(2x-1\right)^2\ge0\) (luôn đúng)

nên căn luôn có nghĩa

c) để căn thức có nghĩa thì \(\dfrac{3}{x+4}\ge0\) mà \(3>0\Rightarrow x+4>0\Rightarrow x>-4\)

h) để căn thức có nghĩa thì \(x^2-4\ge0\Rightarrow x^2\ge4\Rightarrow\left|x\right|\ge2\)

i) để căn thức có nghĩa thì \(\dfrac{2+x}{5-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2+x\ge0\\5-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2+x\le0\\5-x< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-2\le x< 5\\\left\{{}\begin{matrix}x\le-2\\x>5\end{matrix}\right.\left(l\right)\end{matrix}\right.\Rightarrow-2\le x< 5\)

Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 20:46

a) ĐKXĐ: \(x\in R\)

b) ĐKXĐ: \(x\in R\)

c) ĐKXĐ: x>-4

h) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)

 

Dương Tiến Đạt
Xem chi tiết
Nguyễn Thị Anh Thư
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 13:17

a) ĐKXĐ: \(x\ge2\)

b) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)

c) ĐKXĐ: \(\dfrac{x+3}{5-x}\ge0\)

\(\Leftrightarrow\dfrac{x+3}{x-5}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow-3\le x< 5\)

Menna Brian
Xem chi tiết
Lấp La Lấp Lánh
15 tháng 9 2021 lúc 12:21

a) Để \(\sqrt{\dfrac{x}{3}}\) có nghĩa thì \(\dfrac{x}{3}\ge0\Leftrightarrow x\ge0\)

b) Để \(\sqrt{-5x}\) có nghĩa thì \(-5x\ge0\Leftrightarrow x\le0\)

c) Để \(\sqrt{4-x}\) có nghĩa thì \(4-x\ge0\Leftrightarrow x\le4\)

d) Để \(\sqrt{3x+7}\) có nghĩa thì \(3x+7\ge0\Leftrightarrow x\ge-\dfrac{7}{3}\)

e) Để \(\sqrt{-3x+4}\) có nghĩa thì \(-3x+4\ge0\Leftrightarrow x\le\dfrac{4}{3}\)

f) Để \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\dfrac{1}{-1+x}\ge0\\-1+x\ne0\end{matrix}\right.\)

\(\Leftrightarrow-1+x>0\Leftrightarrow x>1\)

g) Để \(\sqrt{1+x^2}\) có nghĩa thì \(1+x^2\ge0\left(đúng\forall x\right)\)

h) \(\sqrt{\dfrac{5}{x-2}}\) có nghĩ thì \(\left\{{}\begin{matrix}\dfrac{5}{x-2}\ge0\\x-2\ne0\end{matrix}\right.\)

\(\Leftrightarrow x-2>0\Leftrightarrow x>2\)

hưng phúc
15 tháng 9 2021 lúc 12:23

a. \(x\ge0\)

b. \(x< 0\)

c. \(x\le4\)

d. \(x\ge\dfrac{-7}{3}\)

e. \(x\le\dfrac{4}{3}\)

f. \(x>1\)

g. Mọi x

h. \(x>2\)

Adu vip
Xem chi tiết
An Thy
14 tháng 7 2021 lúc 9:06

để căn có nghĩa thì \(2x^2+4x+5\ge0\)

\(\Rightarrow2x^2+4x+2+3\ge0\Rightarrow2\left(x+1\right)^2+3\ge0\) (luôn đúng)

\(\Rightarrow\) căn luôn có nghĩa với mọi \(x\in R\)

 

Nguyễn Lê Phước Thịnh
14 tháng 7 2021 lúc 15:10

ĐKXĐ: \(x\in R\)