Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Thị Hà Vy
Xem chi tiết
Nguyễn Tũn
14 tháng 8 2018 lúc 13:21

dễ ẹc!!!!!!!!

Hn . never die !
1 tháng 5 2020 lúc 21:16

Trả lời :

Bn Nguyễn Tũn bảo dễ ẹt thì làm đi.

- Hok tốt !

^_^

Khách vãng lai đã xóa
❤️ HUMANS PLAY MODE ❤️
1 tháng 5 2020 lúc 21:19

dễ ẹc thì lm cho mk coi đi

mk ko bt lm

Khách vãng lai đã xóa
Phát Thuận
Xem chi tiết
Nguyễn Quang Minh
25 tháng 4 2022 lúc 14:00

Đỗ Vũ Thảo Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 18:29

a:

Sửa đề: \(AD\cdot AC=AB^2=AO^2-R^2\)

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>BD\(\perp\)DC tại D

=>BD\(\perp\)CA tại D

Xét ΔBCA vuông tại B có BD là đường cao

nên \(AD\cdot AC=AB^2\left(1\right)\)

Xét ΔOBA vuông tại B có \(OB^2+BA^2=OA^2\)

=>\(BA^2+R^2=OA^2\)

=>\(BA^2=OA^2-R^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AC=AB^2=OA^2-R^2\)

b: ΔOBE cân tại O

mà OH là đường cao

nên H là trung điểm của BE

Xét ΔBCE có

O,H lần lượt là trung điểm của BC,BE

=>OH là đường trung bình của ΔBCE

=>OH//CE và OH=1/2CE

OH//CE

F\(\in\)OH

Do đó: HF//CE

\(OH=\dfrac{1}{2}CE\)

\(OH=\dfrac{1}{2}FH\)

Do đó: CE=FH

Xét tứ giác CEHF có

CE//HF

CE=HF

Do đó: CEHF là hình bình hành

Hình bình hành CEHF có \(\widehat{FHE}=90^0\)

nên CEHF là hình chữ nhật

ΔOBE cân tại O

mà OH là đường cao

nên OH là phân giác của góc BOE

Xét ΔOBA và ΔOEA có

OB=OE

\(\widehat{BOA}=\widehat{EOA}\)

OA chung

Do đó: ΔOBA=ΔOEA

=>\(\widehat{OBA}=\widehat{OEA}=90^0\)

=>AE là tiếp tuyến của (O)

c: Xét (O) có

ΔBGC nội tiếp

BC là đường kính

Do đó: ΔBGC vuông tại G

=>GB\(\perp\)GC tại G

Xét ΔHEC vuông tại E và ΔHGB vuông tại G có

\(\widehat{EHC}=\widehat{GHB}\)

Do đó: ΔHEC đồng dạng với ΔHGB

=>\(\dfrac{HE}{HG}=\dfrac{HC}{HB}\)

=>\(HE\cdot HB=HG\cdot HC\)

=>\(HG\cdot HC=HB^2\left(3\right)\)

Xét ΔBOA vuông tại B có BH là đường cao

nên \(HO\cdot HA=HB^2\left(4\right)\)

Từ (3) và (4) suy ra \(HG\cdot HC=HO\cdot HA\)

 

Trần Nhật Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2021 lúc 0:16

a: Xét \(\left(O\right)\) có 

AB là tiếp tuyến có B là tiếp điểm

AC là tiếp tuyến có C là tiếp điểm

Do đó: AB=AC

Ta có: OB=OC

nên O nằm trên đường trung trực của BC\(\left(1\right)\)

Ta có: HB=HC

nên H nằm trên đường trung trực của BC\(\left(2\right)\)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC\(\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra A,H,O thẳng hàng

Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Ngọc Anh Minh
22 tháng 12 2023 lúc 14:01

A B C O D E H K I M N P S

a/

Ta có

\(\widehat{ABO}=\widehat{ACO}=90^o\) => B và C cùng nhìn AO dưới 1 góc \(90^o\)

=> B; C nằm trên đường tròn đường kính AO => A; B; O; C cùng nằm trên 1 đường tròn

b/

Xét tg vuông ABO và tg vuông ACO có

OA chung; OB=OC (bán kính (O)) => tg ABO = tg ACO (hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau)

Xét tg ABH và tg ACH có

AH chung

AB=AC (2 tiếp tuyến cùng xp từ 1 điểm...)

tg ABO = tg ACO (cmt) \(\Rightarrow\widehat{BAO}=\widehat{CAO}\)

=> tg ABH = tg ACH (c.g.c) \(\Rightarrow\widehat{AHB}=\widehat{AHC}\) Mà \(\widehat{AHB}+\widehat{AHC}=\widehat{BHC}=180^o\)

\(\Rightarrow\widehat{AHB}=\widehat{AHC}=90^o\Rightarrow OA\perp BC\) tại H

Ta có ID=IE (gt) \(\Rightarrow OI\perp DE\) (trong đường tròn đường thẳng đi qua tâm và trung điểm của dây cung thì vuông góc với dây cung)

Xét tg vuông AHK và tg vuông AIO có

\(\widehat{OAI}\) chung

=> tg AHK đồng dạng với tg AIO 

\(\Rightarrow\dfrac{AH}{AI}=\dfrac{AK}{AO}\Rightarrow AH.AO=AK.AI\)

c/

 

 

Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2023 lúc 13:37

a: Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp

=>A,B,C,O cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2\)

mà OB=OD

nên \(OD^2=OH\cdot OA\)

=>\(\dfrac{OD}{OH}=\dfrac{OA}{OD}\)

Xét ΔODA và ΔOHD có

\(\dfrac{OD}{OH}=\dfrac{OA}{OD}\)

\(\widehat{DOA}\) chung

Do đó: ΔODA đồng dạng với ΔOHD

Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 12 2023 lúc 12:59

loading...

Thảo
Xem chi tiết
Phạm Quỳnh Anh 9a13-
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2021 lúc 22:40

a: Xét tứ giác OBAC có 

\(\widehat{OBA}+\widehat{OCA}=180^0\)

Do đó: OBAC là tứ giác nội tiếp