Cho \(x\ge7;y\ge4\). Tìm GTNN của biểu thức S = \(x+y+\frac{1}{x}+\frac{1}{y}\)
cho x, y >0. thỏa mãn: x+y=1. CM: \(3\left(3x-2\right)^2+\frac{8x}{y}\ge7\)
\(VT=27x^2-36x+12+\frac{8x}{y}\)
\(=\frac{8x}{1-x}+18x\left(1-x\right)+45x^2-54x+12\)
\(\ge45x^2-54x+12+24x\)
\(=45x^2-30x+12=5\left(9x^2-6x+\frac{12}{5}\right)\)
\(=5\left[\left(3x-1\right)^2+\frac{7}{5}\right]\ge7\)
Dấu = khi \(x=\frac{1}{3};y=\frac{2}{3}\)
Cho x, y >0 thỏa mãn x+y=1. CMR \(3\left(3x-2\right)^{^2}+\frac{8x}{y}\ge7\)
\(VT=27x^2-36x+12+\frac{15x-7}{1-x}+7\)
\(VT=\frac{-27x^3+63x^2-33x+5}{1-x}+7=\frac{\left(3x-1\right)^2\left(5-3x\right)}{1-x}+7\)
Do \(x< 1\Rightarrow\left\{{}\begin{matrix}5-3x>0\\1-x>0\end{matrix}\right.\) \(\Rightarrow\frac{\left(3x-1\right)^2\left(5-3x\right)}{1-x}\ge0\)
\(\Rightarrow VT\ge7\) (đpcm)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{1}{3}\\y=\frac{2}{3}\end{matrix}\right.\)
tìm x biết: |3-5x|\(\ge7\)
Ta có :
\(\left|3-5x\right|\ge7\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}3-5x\ge7\\5x-3\ge7\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-5x\ge4\\5x\ge10\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x\le-\frac{4}{5}\\x\ge2\end{array}\right.\)
Vậy ........
|3-5x|>=7
=>3-5x >=7 hoặc 3-5x>=-7
Xét tiếp...
Cho x, y là 2 số dương thỏa mãn điều kiện x + y = 1. CMR :
\(3\left(3x-2\right)^2+\frac{8x}{y}\ge7\)
\(VT=3\left(9x^2-12x+4\right)+\frac{8x}{1-x}=27x^2-36x+12+\frac{8x}{1-x}\)
\(=27x^2-36x+4+\frac{8}{1-x}=27x^2-18x-6+8\left(1-x\right)+\frac{8}{1-x}\)
\(=27x^2-18x+3+8\left(1-x\right)+\frac{8}{1-x}-9\)
\(=3\left(3x-1\right)^2+8\left(1-x\right)+\frac{8}{1-x}-9\)
\(\Rightarrow VT\ge2\sqrt{8^2}-9=7\)
Dấu " = " xảy ra khi \(x=\frac{1}{3}\)
Tìm x biết : \(\left|5x-3\right|-x\ge7\)
Ta có:\(\left|5x-3\right|=\left[{}\begin{matrix}5x-3\left(x\ge0\right)\\-\left(5x-3\right)=3-5x\left(x< 0\right)\end{matrix}\right.\)
Do đó, ta có 2 TH:
TH1:
\(5x-3-x\ge7\left(x\ge0\right)\\ \Leftrightarrow4x\ge7+3\\ \Leftrightarrow4x\ge10\\ \Leftrightarrow x\ge2,5\left(t/m\right)\)
TH2:
\(3-5x-x\ge7\left(x< 0\right)\\ \Leftrightarrow-6x\ge7-3\\ \Leftrightarrow-6x\ge4\\ \Leftrightarrow x\le-\dfrac{2}{3}\left(t/m\right)\)
Vậy \(x\ge2,5\) hoặc \(x\le-\dfrac{2}{3}\)
Cho x, y là 2 số dương thõa mãn điều kiện x + y = 1
CMR: \(3\left(3x-2\right)^2+\frac{8x}{y}\ge7\)
Tìm x biết
\(|5x-3|\ge7\)
Theo bài ra ta có:
|5x-3| lớn hơn hoặc bằng 7
=> 5x-3 lớn hơn hoặc bằng 7 hoặc 5x-3 lớn hơn hoặc bằng -7
=> x lớn hơn hoặc bằng 2 hoặc x lớn hơn hoặc bằng 4/15
PS mình ko ghi đc dấu lớn hơn hoặc bằng
Ta có: \(\left|5x-3\right|\ge7\)
\(\Rightarrow\orbr{\begin{cases}5x-3\ge7\\5x-3\ge-7\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}5x\ge10\\5x\ge-4\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x\ge-\frac{4}{5}\end{cases}}}\)
_Học tốt_
Cho x,y là hai số dương thỏa mãn điều kiện x+y=1
cmr \(3\left(3x-2\right)^2+\frac{8x}{7}\ge7\)
Cho y ở đề bài làm gì trong khi biểu thức ở vế trái bên dưới ko có y?
à là \(\frac{8x}{y}\)đó
Cho x,y là hai số dương thỏa mãn: x + y = 1. Chứng minh rằng: \(3\left(3x-2\right)^2+\frac{8x}{y}\ge7\)
cho x,y >0 và x+y\(\le\)1
chứng minh rằng A=\(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\ge7\)
\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{1}{4xy}\)
\(A\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{1}{\left(x+y\right)^2}\)
\(A\ge\frac{4}{1^2}+2+\frac{1}{1^2}=7\)
Dấu "=" khi \(x=y=\frac{1}{2}\)