tính giá trị biểu thức:
b) B= \(\dfrac{2^{50}.6^{10}.9^9}{12}\)
Tính giá trị biểu thức:
B= \(\dfrac{\left(-2\right)^{24}.3^5-4^{12}.9^2}{8^8.3^5}+\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{301.303}\)
\(B=\dfrac{2^{24}\cdot3^5-2^{24}\cdot3^4}{2^{24}\cdot3^5}+1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{301}-\dfrac{1}{303}\)
\(=\dfrac{2^{24}\cdot3^4\left(3-1\right)}{2^{24}\cdot3^5}+\dfrac{302}{303}\)
\(=\dfrac{2}{3}+\dfrac{302}{303}=\dfrac{202+302}{303}=\dfrac{504}{303}\)
=168/101
tính giá trị biểu thức sau:
\(A= \dfrac { 2^{19} . 27^3 - 15 . 4^9 . 9^4 }{ 6^9 . 2^{10} + 12^ {10}}\)
\(=\dfrac{2^{19}\cdot3^9-3\cdot3^8\cdot2^{18}\cdot5}{2^{19}\cdot3^9+2^{20}\cdot3^{10}}=\dfrac{-3^{10}\cdot2^{18}}{2^{19}\cdot3^9\cdot7}=-\dfrac{3}{14}\)
Cho biểu thức:
B=\(\left(\dfrac{1}{3-\sqrt{x}}-\dfrac{1}{3+\sqrt{x}}\right).\dfrac{3+\sqrt{x}}{\sqrt{x}}\)( với x>0;x\(\ne\)9)
Rút gọn biểu thức và tìm tất cả các giá trị nguyên của x để B>\(\dfrac{1}{2}\)
`B=(1/(3-sqrtx)-1/(3+sqrtx))*(3+sqrtx)/sqrtx(x>=0,x ne 9)`
`B=((3+sqrtx)/(9-x)-(3-sqrtx)/(9-x))*(3+sqrtx)/sqrtx`
`B=((3+sqrtx-3+sqrtx)/(9-x))*(3+sqrtx)/sqrtx`
`B=(2sqrtx)/((3-sqrtx)(3+sqrtx))*(3+sqrtx)/sqrtx`
`B=2/(3-sqrtx)`
`B>1/2`
`<=>2/(3-sqrtx)-1/2>0`
`<=>(4-3+sqrtx)/[2(3-sqrtx)]>0`
`<=>(sqrtx+1)/(2(3-sqrtx))>0`
Mà `sqrtx+1>=1>0`
`<=>2(3-sqrtx)>0`
`<=>3-sqrtx>0`
`<=>sqrtx<3`
`<=>x<9`
tính giá trị biểu thức \(\dfrac{2}{3}+\dfrac{1}{3}.\left(-\dfrac{4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}.\dfrac{12}{7}\)
\(=\dfrac{2}{3}+\dfrac{7.3.2.2}{3.7.3.2.3}\)
\(=\dfrac{2}{3}+\dfrac{2}{9}=\dfrac{8}{9}\)
TICK CHO MÌNH NHÉ
Giải:
\(\dfrac{2}{3}\) + \(\dfrac{1}{3}\) . (\(-\dfrac{4}{9}\) + \(\dfrac{5}{6}\) ) : \(\dfrac{7}{12}\)
= \(\dfrac{2}{3}\) + \(^{\dfrac{1}{3}}\) . \(\dfrac{7}{18}\) : \(\dfrac{7}{12}\)
= \(\dfrac{2}{3}\) + \(\dfrac{7}{54}\) : \(\dfrac{7}{12}\)
= \(\dfrac{2}{3}\) + \(\dfrac{2}{9}\)
= \(\dfrac{8}{9}\)
2 /3 + 1/ 3 . ( − 4 9 + 5 6 ) : 7 /12
= 2/ 3 + 1 /3 . 7 /18 . 12/ 7
= 2/ 3 + 7 /48 . 12 /7
= 2/ 3 + 1/ 4
= 11/ 12
Tính giá trị các biểu thức sau:
a) \(\dfrac{2}{3}\)+\(\dfrac{1}{3}\).(\(\dfrac{-4}{9}\)+\(\dfrac{5}{6}\)):\(\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{1}{3}.\left(\dfrac{7}{18}\right):\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{7}{54}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{2}{9}\)
\(=\dfrac{8}{9}\)
Tìm giá trị nhỏ nhất của biểu thức:
B= \(\dfrac{2x^{2^{ }}-12x+25}{x^{2^{ }}-6x+12}\)
\(B=\dfrac{2x^2-12x+25}{x^2-6x+12}=\dfrac{2\left(x^2-6x+12\right)+1}{x^2-6x+12}=2+\dfrac{1}{x^2-6x+9+4}=2+\dfrac{1}{\left(x-3\right)^2+4}\le2+\dfrac{1}{4}=\dfrac{9}{4}\)
Không có min nha bạn . Chỉ có max thôi
Dấu = xảy ra khi x=3
Tính giá trị của biểu thức sau:
\(B=\dfrac{1}{3}\cdot b+\dfrac{2}{9}\cdot b-b:\dfrac{9}{4}\) với \(b=\dfrac{9}{10}\).
\(B=\frac{1}{3}.b+\frac{2}{9}.b– b: \frac{9}{4}= \frac{1}{3}.b+\frac{2}{9}.b – b. \frac{4}{9}\)
\(=b(\frac{1}{3}+\frac{2}{9}-\frac{4}{9})=b. (\frac{3}{9}+\frac{2}{9}-\frac{4}{9})= b. \frac{1}{9} \)
Thay \(b=\frac{9}{10}\) vào B, ta được
B= \(b=\frac{9}{10}. \frac{1}{9}= \frac{1}{10}\)
tính giá trị của biểu thức
a) \(log_2\dfrac{9}{10}\)+ \(log_330\)
b) \(log_3\dfrac{5}{9}\) - \(2log_3\sqrt{5}\)
c) \(log_2\dfrac{16}{3}+2log_2\sqrt{6}\)
\(log_2\dfrac{9}{10}+log_330=\) ? bạn chắc đề đúng chứ, 2 cơ số ko giống nhau, rút gọn cũng được nhưng nó sẽ không gọn trên thực tế.
\(log_3\dfrac{5}{9}-2log_3\sqrt{5}=log_3\dfrac{5}{9}-log_35=log_3\left(\dfrac{1}{9}\right)=log_33^{-2}=-2\)
\(log_2\dfrac{16}{3}+2log_2\sqrt{6}=log_2\dfrac{16}{3}+log_26=log_2\left(\dfrac{16}{3}.6\right)=log_232=log_22^5=5\)
tính giá trị biểu thức (2^19*27^3+15*4^9*9^4)/(6^9*2^10+12^10)
\(\frac{2^{19}.27^3+15^4.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.\left(3^3\right)^3+\left(3.5\right)^4.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(=\frac{2^{19}.3^9+3^{12}.5^4.2^{18}}{2^{19}.3^9+2^{20}.3^{10}}\)
\(=\frac{2^{18}.3^9.\left(2+3^3+5^4\right)}{2^{19}.3^9.\left(1+2+3\right)}\)
\(=\frac{654}{2.6}\)
\(=\frac{109}{2}\)
Chúc bn học tốt !!!!