Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Dinh Quan
Xem chi tiết
vũ anh thư
Xem chi tiết
Nguyễn Ngọc Anh Minh
5 tháng 12 2023 lúc 16:50

Giả sử \(A\left(x_0;y_0\right)\) là điểm cố định mà \(y=\left(m-2\right)x+3m-1\) luôn đi qua \(\forall m\)

\(\Rightarrow y_0=\left(m-2\right)x_0+3m-1\)

\(\Leftrightarrow y_0-mx_0+2x_0-3m+1=0\)

\(\Leftrightarrow m\left(x_0+3\right)-y_0-2x_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+3=0\\-y_0-2x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=-5\end{matrix}\right.\)

Vậy với mọi m đường thẳng đã cho luôn đi qua điểm cố định có tọa độ (-3; -5)

Lê Song Phương
5 tháng 12 2023 lúc 16:45

Gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)

Theo đề bài, ta có:

\(y_0=\left(m-2\right)x_0+3m-1\) với mọi m

\(\Leftrightarrow\left(x_0+3\right)m-2x_0-y_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\2x_0+y_0+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=5\end{matrix}\right.\)

Vậy đường thẳng đã cho luôn đi qua điểm \(M\left(-3;5\right)\) cố định.

Hoàng Thị Thương
Xem chi tiết

Đề sai rồi bn

Không có phương trình đường thẳng nào có phương trình là :

\(\left(2m+3\right)+\left(m+5\right)+\left(4m-1\right)=0\) cả , thiếu \(y\) và cả biến số \(x\)

_Minh ngụy _ 

tranthuylinh
Xem chi tiết
An Thy
3 tháng 6 2021 lúc 7:45

Gọi \(A\left(x;y\right)\) là điểm cố định mà (d) luôn đi qua

\(\Rightarrow y=2mx+m+1\Rightarrow2mx+m+1-y=0\)

Vì khi m thay đổi thì (d) vẫn đi qua điểm A \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=m+1\end{matrix}\right.\)

\(\Rightarrow\) (d) luôn đi qua điểm \(A\left(0,m+1\right)\)

 

Angela jolie
Xem chi tiết
Akai Haruma
12 tháng 6 2020 lúc 23:45

Lời giải:
a)

Gọi $(x_0, y_0)$ là điểm cố định mà $(d_1)$ với mọi $m$

Khi đó:

$mx_0+(m-2)y_0+m+2=0$ với mọi $m$

$\Leftrightarrow m(x_0+y_0+1)+(2-2y_0)=0$ với mọi $m$

\(\Rightarrow \left\{\begin{matrix} x_0+y_0+1=0\\ 2-2y_0=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y_0=1\\ x_0=-2\end{matrix}\right.\)

Vậy điểm cố định mà $(d_1)$ luôn đi qua với mọi $m$ là $(-2,1)$

-----------------

Gọi điểm cố định mà $(d_2)$ luôn đi qua với mọi $m$ là $(x_0,y_0)$

Ta có:

$(2-m)x_0+my_0-m-2=0$ với mọi $m$

$\Leftrightarrow m(y_0-x_0-1)+(2x_0-2)=0$ với mọi $m$

\(\Rightarrow \left\{\begin{matrix} y_0-x_0-1=0\\ 2x_0-2=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_0=1\\ y_0=2\end{matrix}\right.\)

Vậy điểm cố định cần tìm là $(1,2)$

b) Gọi $I(a,b)$ là giao điểm của $(d_1); (d_2)$

Ta có:

$ma+(m-2)b+m+2=0(1)$

$(2-m)a+mb-m-2=0(2)$

Lấy $(1)+(2)\Rightarrow a+(m-1)b=0$

Lấy $(1)-(2)\Rightarrow (m-1)a-b+m+2=0$

Từ 2 PT trên ta dễ dàng suy ra $b=\frac{m+2}{(m-1)^2+1}; a=\frac{(m+2)(1-m)}{(m-1)^2+1}$

Bằng khai triển ta thấy:

\((\frac{(m+2)(1-m)}{(m-1)^2+1}+\frac{1}{2})^2+(\frac{m+2}{(m-1)^2+1}-\frac{3}{2})^2=\frac{5}{2}\) là hằng số

Do đó điểm $I$ luôn thuộc đường tròn tâm $(\frac{-1}{2}; \frac{3}{2})$ bán kính $\sqrt{\frac{5}{2}}$ là đường tròn cố định.

Trần Minh Minh
Xem chi tiết
Dương Ngọc Anh
Xem chi tiết
top elsu hà nội
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2021 lúc 15:20

Chắc hàm là \(y=\left(m+1\right)x+m-1\)

Giả sử đường thẳng d đi qua điểm cố định có tọa độ \(A\left(x_0;y_0\right)\), khi đó với mọi m ta luôn có:

\(y_0=\left(m+1\right)x_0+m-1\)

\(\Leftrightarrow m\left(x_0+1\right)+x_0-y_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\x_0-y_0-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2\end{matrix}\right.\)

Vậy khi m thay đổi thì d luôn đi qua điểm cố định có tọa độ \(\left(-1;-2\right)\)

Nghiêu Nghiêu
Xem chi tiết
Mysterious Person
12 tháng 8 2018 lúc 11:59

a) ta có : \(\left(d\right):y=\dfrac{2\left(2-m\right)x}{m-1}+\dfrac{4}{m-1}\)

\(\Rightarrow\) để \(\left(d\right)\cap\left(P\right)\Leftrightarrow x^2-\dfrac{2\left(2-m\right)x}{m-1}+\dfrac{4}{m-1}=0\)

\(\Leftrightarrow\left(m-1\right)x^2-2\left(2-m\right)x+4=0\)

để \(\left(d\right)\) cắt \(\left(P\right)\) tại 2 điểm phân biệt \(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\\Delta'>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left(2-m\right)^2-4\left(m-1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m^2-4m+4-4m+4>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m^2-8m+8>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left(m-4+2\sqrt{2}\right)\left(m-4-2\sqrt{2}\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left[{}\begin{matrix}m\ge4+2\sqrt{2}\\m>4-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\) vậy .....................................................................................

b) ta có : \(2\left(m-2\right)x+\left(m-1\right)y=4\)

\(\Leftrightarrow2mx-4x+my-y-4=0\)

\(\Leftrightarrow m\left(2x+y\right)+\left(-4x-y-4\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=0\\-4x-y-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\) vậy điểm cố định mà \(\left(d\right)\) đi qua khi \(m\) thay đổi là \(A\left(-2;4\right)\)