Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 4 2018 lúc 8:44

x 4 − 5 x 3 + 8 x 2 − 10 x + 4 = 0 ⇔ ( x 4 + 4 x 2 + 4 ) − 5 x 3 + 4 x 2 − 10 x = 0

⇔ x 2 + 2 2 − 5 x 3 + 10 x + 4 x 2 = 0 ⇔ x 2 + 2 2 − 5 x x 2 + 2 + 4 x 2 = 0

Đặt t = x 2 + 2  ta được t 2 − 5 t x + 4 x 2 = 0 ⇔ t − x t − 4 x = 0

Hay phương trình đã cho ⇔ x 2 − x + 2 x 2 − 4 x + 2 = 0

⇔ x 2 − x + 2 = 0    ( V N ) x 2 − 4 x + 2 = 0 ⇔ x = 2 ± 2

Vậy phương trình không có nghiệm nguyên

Đáp án cần chọn là: D

Phạm Huỳnh Hoài Thương
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 22:30

5:

=>x^4-9x^2+x^2-9=0

=>x^2-9=0

=>x=3; x=-3

4: loading...

3: HS đồng biến khi x>0

=>5m+10>0

=>m>-2

Phạm Mai Phương
Xem chi tiết
Ichigo Sứ giả thần chết
21 tháng 8 2017 lúc 21:41

\(x^4-10x^3+35x^2+24>0\)

\(\Leftrightarrow x^4-2.5.x^3+\left(5x\right)^2+10x^2+24>0\)

\(\Leftrightarrow\left(x^2-5x\right)^2+10x^2+24>0\)

\(\Leftrightarrow x^2\left(x-5\right)^2+10x^2+24>0\)(luôn đúng)

Vậy nghiệm của bất phương trình \(x\in R\)

Bexiu
21 tháng 8 2017 lúc 21:47

Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B

Phạm Mai Phương
22 tháng 8 2017 lúc 6:17

Câu hỏi của mk là nhỏ hơn 0 cơ mà ak

Bé Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2021 lúc 19:53

Câu 1: 

a) Ta có: 7x+21=0

\(\Leftrightarrow7x=-21\)

hay x=-3

Vậy: S={-3}

b) Ta có: 3x-2=2x-3

\(\Leftrightarrow3x-2-2x+3=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

Vậy: S={-1}

c) Ta có: 5x-2x-24=0

\(\Leftrightarrow3x=24\)

hay x=8

Vậy: S={8}

Câu 2: 

a) Ta có: \(\left(2x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{1}{2};1\right\}\)

b) Ta có: \(\left(2x-3\right)\left(-x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\-x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\-x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=7\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{3}{2};7\right\}\)

c) Ta có: \(\left(x+3\right)^3-9\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)^2-9\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+3-3\right)\left(x+3+3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-6\end{matrix}\right.\)

Vậy: S={0;-3;-6}

Bạch Tiểu Uyển
Xem chi tiết
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2023 lúc 13:39

b: ĐKXD: x<>1/5; x<>3

PT\(\Leftrightarrow\dfrac{3}{5x-1}-\dfrac{2}{x-3}=\dfrac{-4}{\left(5x-1\right)\left(x-3\right)}\)

=>3x-9-10x+2=-4

=>-7x-7=-4

=>-7x=3

=>x=-3/7

a: ĐKXĐ: x<>2/3; x<>-2/3

\(PT\Leftrightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x\)

=>9x^2+12x+4-18x+12-9x=0

=>9x^2-15x+16=0

=>\(x\in\varnothing\)

c: ĐKXĐ: x<>1/4; x<>-1/4

PT =>-3(4x+1)=2(4x-1)-6x-8

=>-12x-3=8x-2-6x-8

=>-12x-3=2x-10

=>-14x=-7

=>x=1/2

d: ĐKXĐ: x<>0; x<>2

\(\Leftrightarrow\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)

=>2(5-x)+7(x-2)=4(x-1)+x

=>10-2x+7x-14=4x-4+x

=>5x-4=5x-4

=>0x=0(luôn đung)

Vậy: S=R\{0;2}

e: DKXĐ: x<>0

PT \(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

=>x(x^3+1-x^3+1)=3

=>2x=3

=>x=3/2

Xem chi tiết
(っ◔◡◔)っ ♥ Aurora ♥
25 tháng 2 2023 lúc 13:39

\(a,\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\left(ĐKXĐ:x\ne\pm2\right)\)

\(\Leftrightarrow\dfrac{\left(y-1\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}-\dfrac{5\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}-\dfrac{12}{\left(y-2\right)\left(y+2\right)}-\dfrac{\left(y-2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}=0\)

\(\Leftrightarrow\dfrac{y^2+y-2}{\left(y-2\right)\left(y+2\right)}-\dfrac{5y-10}{\left(y-2\right)\left(y+2\right)}-\dfrac{12}{\left(y-2\right)\left(y+2\right)}-\dfrac{y^2-4}{\left(y-2\right)\left(y+2\right)}=0\)

\(\Leftrightarrow\dfrac{y^2+y-2-5y+10-12-y^2+4}{\left(y-2\right)\left(y+2\right)}=0\)

\(\Rightarrow-4y=0\)

\(\Leftrightarrow y=0\left(tm\right)\)

\(b,\dfrac{1}{4z^2-12z+9}-\dfrac{3}{9-4z^2}=\dfrac{4}{4z^2+12z+9}\left(ĐKXĐ:z\ne\pm\dfrac{3}{2}\right)\)

\(\Leftrightarrow\dfrac{1}{\left(2z-3\right)^2}+\dfrac{3}{\left(2z-3\right)\left(2z+3\right)}-\dfrac{4}{\left(2z+3\right)^2}=0\)

\(⇔\dfrac{\left(2z+3\right)^2}{\left(2z-3\right)^2\left(2z+3\right)^2}+\dfrac{3\left(2z-3\right)\left(2z+3\right)}{\left(2z-3\right)^2\left(2z+3\right)^2}-\dfrac{4\left(2z-3\right)^2}{\left(2z-3\right)^2\left(2z+3\right)^2}=0\)

\(\Leftrightarrow\dfrac{4z^2+12z+9}{\left(2z-3\right)^2\left(2z+3\right)^2}+\dfrac{12z^2-27}{\left(2z-3\right)^2\left(2z+3\right)^2}-\dfrac{16z^2-48z+36}{\left(2z-3\right)^2\left(2z+3\right)^2}=0\)

\(\Leftrightarrow\dfrac{4z^2+12z+9+12z^2-27-16z^2+48z-36}{\left(2z-3\right)^2\left(2z+3\right)^2}=0\)

\(\Rightarrow60z-54=0\)

\(\Leftrightarrow60z=54\)

\(\Leftrightarrow z=\dfrac{9}{10}\left(tm\right).\)

YangSu
25 tháng 2 2023 lúc 13:31

\(a,\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\left(dkxd:y\ne\pm2\right)\)

\(\Leftrightarrow\dfrac{\left(y-1\right)\left(y+2\right)-5\left(y-2\right)-12-y^2+4}{y^2-4}=0\)
\(\Leftrightarrow y^2+2y-y-2-5y+10-12-y^2+4=0\)

\(\Leftrightarrow-4y=0\)

\(\Leftrightarrow y=0\left(tmdk\right)\)

Vậy \(S=\left\{0\right\}\)

\(b,\dfrac{1}{4z^2-12z+9}-\dfrac{3}{9-4z^2}=\dfrac{4}{4z^2+12z+9}\)

\(\Leftrightarrow\dfrac{1}{\left(2z-3\right)^2}-\dfrac{3}{\left(2z-3\right)\left(2z+3\right)}=\dfrac{4}{\left(2z+3\right)^2}\left(dkxd:z\ne\pm\dfrac{3}{2}\right)\)

\(\Leftrightarrow\left(2z+3\right)^2-3\left(4z^2-9\right)-4\left(2z-3\right)^2=0\)

\(\Leftrightarrow4z^2+12z+9-12z^2+27-4\left(4z^2-12z+9\right)=0\)

\(\Leftrightarrow4z^2+12z+9-12z^2+27-16z^2+48z-36=0\)

\(\Leftrightarrow-24z^2+60z=0\)

\(\Leftrightarrow-12z\left(2z-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-12z=0\\2z-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}z=0\left(tmdk\right)\\z=\dfrac{5}{2}\left(tmdk\right)\end{matrix}\right.\)

Vậy \(S=\left\{0;\dfrac{5}{2}\right\}\)

Xuân Mai
Xem chi tiết
HT.Phong (9A5)
27 tháng 9 2023 lúc 11:08

Bài 4: 

Theo định lý sin ta có:
\(\dfrac{AC}{sinB}=\dfrac{BC}{sinA}\)

\(\Rightarrow BC=a=\dfrac{b\cdot sinA}{sinB}=\dfrac{2\cdot sin60^o}{sin45^o}=\sqrt{6}\)

\(\Rightarrow\widehat{C}=180^o-60^o-45^o=75^o\)

\(\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)

\(\Rightarrow AB=c=\dfrac{b\cdot sinC}{sinB}=\dfrac{2\cdot sin75^o}{sin45^o}=1+\sqrt{3}\) 

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot AC\cdot AB\cdot sinA=\dfrac{1}{2}\cdot2\cdot\left(1+\sqrt{3}\right)\cdot sin75^o=\dfrac{\sqrt{6}+2\sqrt{2}}{2}\) (đvdt) 

Bán kình hình tròn tam giác ABC khi đó là:

\(S_{ABC}=\dfrac{abc}{4R}\)

\(\Rightarrow R=\dfrac{abc}{4S_{ABC}}=\dfrac{2\cdot\left(1+\sqrt{3}\right)\cdot\sqrt{6}}{4\cdot\left(\dfrac{\sqrt{6}+2\sqrt{2}}{2}\right)}=3-\sqrt{3}\) 

HT.Phong (9A5)
27 tháng 9 2023 lúc 11:19

Bài 3:

a) Xét tam giác ABC theo định lý côsin ta có:
\(cosC=\dfrac{a^2+b^2-c^2}{2ab}=\dfrac{8^2+10^2-13^2}{2\cdot8\cdot10}=-0,03125\)

\(\Rightarrow\widehat{C}=cos^{-1}-0,03125\approx91^o>90^o\)

Nên tam giác ABC có góc C là góc tù 

c) Theo hệ thức Heron ta có diện tích tam giác ABC là: 

\(S_{ABC}=\sqrt{p\cdot\left(p-a\right)\cdot\left(p-b\right)\cdot\left(p-c\right)}\)

\(\Rightarrow S_{ABC}=\sqrt{\dfrac{8+10+13}{2}\cdot\left(\dfrac{8+10+13}{2}-8\right)\cdot\left(\dfrac{8+10+13}{2}-10\right)\cdot\left(\dfrac{8+10+13}{2}-13\right)}\)

\(\Rightarrow S_{ABC}\approx40\) (đvdt) 

b) Bán kính đường tròn ngoại tiếp tam giác ABC là:
\(S_{ABC}=\dfrac{abc}{4R}\)

\(\Rightarrow R=\dfrac{abc}{4S_{ABC}}=\dfrac{8\cdot10\cdot13}{4\cdot40}=6,5\)

Xuân Mai
Xem chi tiết
2611
29 tháng 9 2023 lúc 20:55

`2)`

`@` Xét `3x+6 >= 0<=>x >= -2`

         `=>A=[-2;+oo)`

`@` Xét `|x-2| < 3`

`<=>-3 < x-2 < 3`

`<=>-1 < x < 5=>B=(-1;5)`

Có: `A nn B=(-1;5)`

      `A uu B=[-2;+oo)`

      `R \\ B=(-oo;-1]uu[5;+oo)`

_______

`3)`

`@` Xét `x+3 >= 2x+7<=>x <= -4=>A=(-oo;-4]`

`@` Xét `4x+5 > 0<=>x > -5/4=>B=(-5/4;+oo)`

`@` Xét `|x+4| < 2<=>-2 < x+4 < 2<=>-6 < x < -2 =>C=(-6;-2)`

Có: `A nn B nn C=\emptyset`

      `A \\ B nn C=(-6;-4]`

       `C \\ A nn B=\emptyset`.