a/ (x-3)(2y+1)=7
b/ (2x+1)(3y-2)=55
TÌM X;Y THUỘC Z BIẾT "TRÊN"
BÀI 9: TÍNH GIÁ TRỊ BIỂU THỨC
a) 2/3x^2y + 3x^2y + x^2y tại x=3 y=7
b) 1/2xy^2 + 1/3xy^2 + 1/6xy^2 tại x=3/4 y= -1/2
c) 2x^3y^3 + 10x^3y^3 - 20x^3y^3 tại x =1 y= -1
d) 2018xy^2 + 16xy^2 - 2016xy^2 tại x= -2 y= -1/3
a: A=2/3x^2y+4x^2y=14/3x^2y
=14/3*9*7=294
b: B=xy^2(1/2+1/3+1/6)=xy^2=3/4*1/4=3/16
c: C=x^3y^3(2+10-20)=-8x^3y^3
=-8*1^3(-1)^3=8
d: D=xy^2(2018+16-2016)
=18xy^2
=18(-2)*1/9=-4
Tìm các số thực x, y thỏa mãn:
a) 2x + 1 + (1 – 2y)i = 2 – x + (3y – 2)i
b) 4x + 3 + (3y – 2)i = y +1 + (x – 3)i
c) x + 2y + (2x – y)i = 2x + y + (x + 2y)i
a,\(\dfrac{x+1}{x-3}+\dfrac{-2x^2+2x}{x^2-9}+\dfrac{x-1}{x+3}\)
b,\(\dfrac{1-2x}{6x^3y}+\dfrac{3+2y}{6x^3y}+\dfrac{2x-4}{6x^3y}\)
c,\(\dfrac{5}{2x^2y}+\dfrac{3}{5xy^2}+\dfrac{x}{3y^3}\)
d,\(\dfrac{5}{4\left(x+2\right)}+\dfrac{8-x}{4x^2+8x}\)
c,\(\dfrac{x^2+2}{x^3+1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
\(a,=\dfrac{x^2+4x+3-2x^2+2x+x^2-4x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ b,=\dfrac{1-2x+3+2y+2x-4}{6x^3y}=\dfrac{2y}{6x^3y}=\dfrac{1}{x^2}\\ c,=\dfrac{75y^2+18xy+10x^2}{30x^2y^3}\\ d,=\dfrac{5x+8-x}{4x\left(x+2\right)}=\dfrac{4\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{1}{x}\\ c,=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
Bài 3: Chứng minh rằng biểu thức sau ko phụ thuộc vào biểu thức
A=(x-5)(2x+3)-2x(x-3)+x+7
B=4(y-6)-y22(2+3y)+y(5y-4)+3y2
Bài 4:
a)4a2-16b2
b) 4x2-4x+1
c.1) (2x+y)2-x2
c,2) y2+_x-y2
d) (x-y)2-(2x-y)2
e) 8x3-y3
i)3x+6y+(x+2y)
j) ax-ay-x+y
k) 2x2-y+6x2y-3y2
Bài \(3\)
\(A=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2+3x-10x-15-\left(2x^2-6x\right)+x+7\)
\(=2x^2+3x-10x-15-2x^2+6x+x+7\)
\(=\left(2x^2-2x^2\right)+\left(3x-10x+6x+x\right)+\left(-15+7\right)\)
\(=-8\)
Vậy biểu thức không phụ thuộc vào biến
\(B=4\left(y-6\right)-y^2\left(2+3y\right)+y\left(5y-4\right)+3y^2\)
Đề như này à?
Bài \(4\)
\(a,4a^2-16b^2=4\left(a^2-4b^2\right)=4\left(a-2b\right)\left(a+2b\right)\)
\(b,4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x+1\right)^2\)
\(c,\) ?
\(d,\left(x-y\right)^2-\left(2x-y\right)^2\\ =\left[\left(x-y\right)-\left(2x-y\right)\right]\left[\left(x-y\right)+\left(2x-y\right)\right]\\ =\left(x-y-2x+y\right)\left(x-y+2x-y\right)\\ =\left(-x\right)\left(3x-2y\right)\)
\(e,8x^3-y^3=\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(i,3x+6y+\left(x+2y\right)\\ =3\left(x+2y\right)+\left(x+2y\right)\\ =4\left(x+2y\right)\)
\(j,ax-ay-x+y=\left(ãx-ay\right)-\left(x-y\right)\\ =a\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(a-1\right)\)
`k,` `y` hay `y^2` ạ? vì nó mới phân tích được nhân tử.
Tớ xin làm câu k nhé!
\(k)2x^2-y+6x^2y-3y^2\\=(2x^2-y)+(6x^2y-3y^2)\\=(2x^2-y)+3y(2x^2-y)\\=(2x^2-y)(1+3y)\)
#\(Toru\)
\(c)\\1)(2x+y)^2-x^2\\=(2x+y-x)(2x+y+x)\\=(x+y)(3x+y)\\2)?\)
Dấu _ là sao cậu?
#\(Toru\)
Bài 1 : Tính giá trị biểu thức sau , biết x+y-2=0
a ) M = x^3+x^2y+2x^2-xy-y^2+3y+x-1
b ) N= x^3-2x^2-xy^2+2xy+2y+2x-2
c ) P = x^4+2x^3y-2x^3+x^2y^2-2x^2y-x*(x+y )+2x+3
Biến đổi mỗi đa thức theo hướng làm xuất hiện thừa số x+y-2 \(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(M=x^3+x^2y-2x^2-xy-y^2+\left(2y+y\right)+x-\left(-2+1\right)\)
\(M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)+1\)
\(M=\left(x^2.x+x^2.y-2x^2\right)-\left(x.y+y.y-2y\right)+\left(x+y-2\right)+1\)
\(M=x^2.\left(x+y-2\right)-y.\left(x+y-2\right)+\left(x+y-2\right)+1\)
\(M=x^2.0+y.0+0+1\)
\(M=1\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-2\)
\(N=x^3+x^2y-2x^2-xy^2+x^2y+2xy+2y+2x-\left(-4+2\right)\)
\(N=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=\left(x^2x+x^2y-2x^2\right)-\left(xyx+xyy-2xy\right)+\left(2x+2y-4\right)+2\)
\(N=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)
\(N=x^2.0-xy.0+2.0+2\)
\(N=2\)
\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(P=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left(x^2+xy-2x\right)+3\)\(P=\left(x^3x+x^3y-2x^3\right)+\left(x^2y.x+x^2yy-2x^2y\right)-\left(xx+xy-2x\right)+3\)
\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3\)
\(P=x^3.0+x^2y.0-x.0+3\)
\(P=3\)
Tích mình nha!
1) x^2-4xy-x+3y^2+3y
2) 6x^2+xy -7x-2y^2+7y-5
3) 2a^2+5ab-3b^2-7b-2
4) 6x^2-xy-2y^2+3x-2y
5) 2x^2 - 3xy-4x-9y^2-6y
Giúp mk với mk đang cần gấp
1: \(=\left(x-3y\right)\left(x-y\right)-\left(x-3y\right)=\left(x-3y\right)\left(x-y-1\right)\)
4: \(=6x^2-4xy+3xy-2y^2+3x-2y\)
\(=\left(3x-2y\right)\left(2x+y\right)+3x-2y=\left(3x-2y\right)\left(2x+y+1\right)\)
cho x+y-2=0
a) A= x^3+x^2y-2x^2-xy-y^2+3y+x-1
b) B= x^3+x^2y-2x^2-x^2y-y^2x+2xy+2y+2x+2
c) C= x^4+2x^3y-2x^3+x^2y^2-2x^2y-x(x+y)+2x+3
2) cho
11...1
a= --------------
n chữ số 1
100...05
b= ------------------
n-1 chữ số 0
CMR: ab+1 là 1 số chính phương
BÀi 2:
Đặt x = 11...1(n chữ số 1), khi đó
a = x
b = 100..05(n-1 chữ số 0) = 100...00(n chữ số 0) + 5
b = 99...9(n chữ số 9) + 1 + 5 = 9x +6
=> \(ab+1=x\left(9x+6\right)+1\)
=> \(ab+1=9x^2+6x+1=\left(3x+1\right)^2\)
Vậy ab + 1 là 1 số chính phương
a) 2x-3y=1
-x+4y=7
b) x+3y=7
2x-3y=8
a: 2x-3y=1 và -x+4y=7
=>2x-3y=1 và -2x+8y=14
=>5y=15 và 2x-3y=1
=>y=3 và 2x=1+3y=10
=>x=5 và y=3
b; x+3y=7 và 2x-3y=8
=>3x=15 và 2x-3y=8
=>x=5 và 3y=2x-8=2*5-8=10-8=2
=>x=5 và y=2/3
Bài 1/ a)(3+x)(x^2-9)-(x-3)(x^2+3x+9)
b)(x+6)^2-2x(x+6)+(x-6)(x+6)
c)2x(x-3y)+3y(2x-5y)
Bài 2/a) 49x^2-1=0 b) (2x-1)^2-(4x+1)(x+3)=-3
Bài 3/ A=x^2+2y^2-2xy+4x-2y+12
Bài 1 :
a) (3+x)(x2-9)-(x-3)(x2+3x+9) = ( x-3)(x+3)2-(x-3)(x2+3x+9)
= (x-3) ( x2+6x+9 - (x2+3x+9)) = (x-3) . 3x = 3x(x-3)
Các câu còn lại mình sẽ gửi bạn sau nếu có thời gian
Nhấn đúng để ủng hộ mình :))
Chia đa thức một biến đã sắp xếp
1/Rút gọn
A=(x-3)(x+2)-(2x^3-2x^2-10x):2x
B=(-4x^3y^3+x^3y^4):2xy^2-xy(2x-xy)
C=(x-3)(x^2+3x+9)-x(x^2-2)-2(x-1)
D=(x-2y)^2+(x+2y)^2+(4y+1)(1-4y)