Tìm số tự nhiên n để 28 + 211 + 2n là số chính phương. n=...
Tìm tất cả các số tự nhiên n sao cho số : 28+211+2n là số chính phương
A,tìm số tự nhiên n có 2 chữ số để 3n+1 và 4n+1 là số chính phương
B,tìm số tự nhiên n có 2 chữ số để n+4 và 2n là số chính phương
A,tìm số tự nhiên n có 2 chữ số để 3n+1 và 4n+1 là số chính phương
B,tìm số tự nhiên n có 2 chữ số để n+4 và 2n là số chính phương
Tìm số tự nhiên n để n^2 + 2n + 6 là 1 số chính phương
Do \(n^2+2n+6\) là số chính phương nên đặt: \(n^2+2n+6=a^2\)
\(\Rightarrow n^2+2n+1+5=a^2\)
\(\Rightarrow\left(n^2+2n+1\right)+5=a^2\)
\(\Rightarrow\left(n+1\right)^2+5=a^2\)
\(\Rightarrow a^2-\left(n+1\right)^2=5\)
\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\)
\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\cdot1\)
Ta có: \(a+n+1>a-n-1\)
\(\Rightarrow\left\{{}\begin{matrix}a+n+1=5\\a-n-1=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+n=4\\a-n=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(4+2\right):2\\n=\left(4-2\right):2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\n=1\end{matrix}\right.\)
Vậy: \(n^2+2n+6\) là số chính phương khi \(n=1\)
\(n^2+2n+6\) là số chính phương
Đặt \(n^2+2n+6=k^2\left(k\in N\right)\)
\(\Leftrightarrow4n^2+8n+24=4k^2\)
\(\Leftrightarrow4n^2+8n+1+23=\left(2k\right)^2\)
\(\Leftrightarrow\left(2n+1\right)^2+23=\left(2k\right)^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2n+1\right)^2=23\)
\(\Leftrightarrow\left(2k+2n+1\right)\left(2k-2n-1\right)=23\)
mà \(2k+2n+1>2k-2n-1,\forall a;k\in N\)
\(\Leftrightarrow\left\{{}\begin{matrix}2k+2n+1=23\\2k-2n-1=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2k+2n=22\\2k-2n=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}k+n=11\\k-n=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}k=6\\n=5\end{matrix}\right.\)
Vậy \(n=5\) thỏa mãn đề bài
tìm số tự nhiên n để n mũ 2 +2n là số chính phương
n2+2n=n(n+2) là số chính phương
=> n=0
tìm số tự nhiên n để 24+27+2n là số chính phương
Đặt \(A=2^4+2^7+2^n=144+2^n\)
Nếu \(n\) lẻ \(\Rightarrow n=2k+1\Rightarrow A=144+2.4^k\equiv2\left(mod3\right)\Rightarrow A\) không thể là SCP (loại)
\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)
\(\Rightarrow144+2^{2k}=m^2\)
\(\Rightarrow144=m^2-\left(2^k\right)^2\)
\(\Rightarrow144=\left(m-2^k\right)\left(m+2^k\right)\)
Giải pt ước số cơ bản này ta được đúng 1 nghiệm thỏa mãn là \(2^k=16\Rightarrow k=4\Rightarrow n=8\)
tôi thấy k=8^2,8^3,8^4.............
Tìm số tự nhiên n để 2n+8n+5 là số chính phương
- Với \(n=0\) không thỏa mãn
- Với \(n=1\) không thỏa mãn
- Với \(n=2\Rightarrow2^n+8n+5=25\) là số chính phương (thỏa mãn)
- Với \(n>2\Rightarrow2^n⋮8\Rightarrow2^n+8n+5\) chia 8 dư 5
Mà 1 SCP chia 8 chỉ có các số dư là 0, 1, 4 nên \(2^n+8n+5\) ko thể là SCP
Vậy \(n=2\) là giá trị duy nhất thỏa mãn yêu cầu
Tìm số tự nhiên n để n^2-2n-10 là số chính phương
\(n^2-2n-10\)
\(=n^2-2n+1-11\)
\(=\left(n-1\right)^2-11\)
\(n^2-2n-10=k^2\left(k\in N\right)\)\(\Leftrightarrow\left(n-1\right)^2-k^2=11\Leftrightarrow\left(n-1-k\right)\left(n-1+k\right)=11\)\(=1\cdot11=11\cdot1=-1\cdot-11=-11\cdot-1\)
Giải 4 trường hợp ta được (n;k) = (7;5), (7;-5), (-5;-5), (-5;5) mà n,k thuộc số tự nhiên suy ra n = 7
Vậy với n = 7 và thì biểu thức là số chính phương.
tìm tất cả n là số tự nhiên để 2n+1, 3n+1 là số chính phương, 2n+9 là số nguyên tố
Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:
\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)
Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)
\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)
Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)
Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\) => (a - 1).(a - 9) = 0
=> a = 9. Từ đó ta có n = 40
Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40
Tìm số tự nhiên n để n^2 + 2n + 12 là số chính phương.